Incorporation of TiO2(B) Nanoparticles into PEO Coatings on MA8 Magnesium Alloy

Article Preview

Abstract:

The way of protective coatings formation on MA8 magnesium alloy by plasma electrolytic oxidation (PEO) in the electrolyte containing TiO2(B) nanoparticles has been developed. It is shown that the coatings, which contain nanoparticles, have a significant advantage in microhardenss and adhesive strength in comparison with the surface layers obtained without their use.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

372-376

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.J. Lee, J. Kim, H.W. Park, Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation, J. Mater. Sci. Technol. 35 (2019) 891–901.

DOI: 10.1016/j.jmst.2018.12.004

Google Scholar

[2] C.-Y. Li, X.-L. Fan, R.-C. Zeng, L.-Y. Cui, S.-Q. Li, F. Zhang, Q.-K. He, M.B. Kannan, H.-W. (George) Jiang, D.-C. Chen, S.-K. Guan, Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA, J. Mater. Sci. Technol. 35 (2019) 1088–1098.

DOI: 10.1016/j.jmst.2019.01.006

Google Scholar

[3] A.S. Gnedenkov, S.V. Lamaka, S.L. Sinebryukhov, D.V. Mashtalyar, V.S. Egorkin, I.M. Imshinetskiy, A.G. Zavidnaya, M.L. Zheludkevich, S.V. Gnedenkov, Electrochemical behaviour of the MA8 Mg alloy in minimum essential medium, Corros. Sci. (2020) 108552.

DOI: 10.1016/j.corsci.2020.108552

Google Scholar

[4] G. Barati Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade, Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications, J. Magnes. Alloy. 5 (2017) 74–132.

DOI: 10.1016/j.jma.2017.02.004

Google Scholar

[5] R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, G.E. Thompson, Characterization of AC PEO coatings on magnesium alloys, Surf. Coatings Technol. 203 (2009) 2207–2220.

DOI: 10.1016/j.surfcoat.2009.02.011

Google Scholar

[6] D. V. Mashtalyar, S.L. Sinebryukhov, I.M. Imshinetskiy, A.S. Gnedenkov, K. V. Nadaraia, A.Y. Ustinov, S. V. Gnedenkov, Hard wearproof PEO-coatings formed on Mg alloy using TiN nanoparticles, Appl. Surf. Sci. 503 (2020) 144062.

DOI: 10.1016/j.apsusc.2019.144062

Google Scholar

[7] A. Fattah-alhosseini, K. Babaei, M. Molaei, Plasma electrolytic oxidation (PEO) treatment of zinc and its alloys: A review, Surfaces and Interfaces. 18 (2020) 100441.

DOI: 10.1016/j.surfin.2020.100441

Google Scholar

[8] X. Liu, D. Wang, Y. Wu, Z. Yang, D. Li, D. Shen, Investigation on corrosion and wear resistance of MgO‐Al 2 O 3 composite coating prepared by plasma electrolytic oxidation, Int. J. Appl. Ceram. Technol. (2020) ijac.13458.

DOI: 10.1111/ijac.13458

Google Scholar

[9] D.V. Mashtalyar, S.V. Gnedenkov, S.L. Sinebryukhov, I.M. Imshinetskiy, A.S. Gnedenkov, V.M. Bouznik, Composite coatings formed using plasma electrolytic oxidation and fluoroparaffin materials, J. Alloys Compd. 767 (2018) 353–360.

DOI: 10.1016/j.jallcom.2018.07.085

Google Scholar

[10] E. Erfanifar, M. Aliofkhazraei, H. Fakhr Nabavi, H. Sharifi, A.S. Rouhaghdam, Growth kinetics and morphology of plasma electrolytic oxidation coating on aluminum, Mater. Chem. Phys. 185 (2017) 162–175.

DOI: 10.1016/j.matchemphys.2016.10.019

Google Scholar

[11] X. Lu, C. Blawert, M. Mohedano, N. Scharnagl, M.L. Zheludkevich, K.U. Kainer, Influence of electrical parameters on particle uptake during plasma electrolytic oxidation processing of AM50 Mg alloy, Surf. Coatings Technol. 289 (2016) 179–185.

DOI: 10.1016/j.surfcoat.2016.02.006

Google Scholar

[12] A. Bordbar-Khiabani, B. Yarmand, M. Mozafari, Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte, Surf. Coatings Technol. 360 (2019) 153–171.

DOI: 10.1016/j.surfcoat.2019.01.002

Google Scholar

[13] D.P. Opra, S. V. Gnedenkov, A.A. Sokolov, V.Y. Mayorov, S.L. Sinebryukhov, Correlation between microstructure of TiO2-anatase precursor and lithium storage properties of hydrothermally synthesized TiO2-B, Scr. Mater. 165 (2019) 150–153.

DOI: 10.1016/j.scriptamat.2019.02.033

Google Scholar

[14] D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, A.B. Podgorbunsky, A.Y. Ustinov, V.Y. Mayorov, V.G. Kuryavyi, S.L. Sinebryukhov, Vanadium-doped TiO2-B/anatase mesoporous nanotubes with improved rate and cycle performance for rechargeable lithium and sodium batteries, J. Mater. Sci. Technol. 54 (2020) 181–189.

DOI: 10.1016/j.jmst.2020.02.068

Google Scholar