Comparison of Ordering Characteristics of Anodicformed Nanostructured Aluminum and Titanium Oxides Coatings

Article Preview

Abstract:

This article is concerned with the analysis of ordering the arrays of TiO2 and Al2O3 nanotubes using the correlation-spectral methods. As the tools, the spatial Fourier spectrum and one-dimensional autocorrelation function of SEM-image have served. It was shown that the arrays of the aluminum oxide nanotubes can have a nearly ideal ordering on a small scale at the expense of two-stage anodizing. It this case, the degree of order depends also on the purity of initial aluminum and sample preparation method. The introduced characteristics can serve as the measures of the structure order-disorder sensitive to both type and degree of order as a whole and to configuration of structural elements themselves.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

349-354

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, Current Opinion in Solid State and Materials Sci. 11 (2007) 3–18.

DOI: 10.1016/j.cossms.2007.08.004

Google Scholar

[2] T.M. Zimina, V.V. Luchinin, J. of Analytical Chemistry. 66, 12 (2011) 1136-1147.

Google Scholar

[3] V.A. Moshnikov, I.E. Gracheva, A.S. Lenshin, Y.M. Spivak, M.G. Anchkov, V.V. Kuznetsov, J.M. Olchowik, J. of non-crystalline solids. 358, 3 (2012) 590-595.

DOI: 10.1016/j.jnoncrysol.2011.10.017

Google Scholar

[4] J. Ferre-Borrull, G. Macias, J.Pallares, L. F. Marsal, Materials 7 (2014) 5225-5253.

Google Scholar

[5] J. M. Macak, Dissertation, Erlangen (2008).

Google Scholar

[6] J. M. Macak, P. J. Barczuk, H. Tsuchiya, M. Z. Novakovska, A. Ghicov, M. Chojak, S. Bauer, S. Virtanen, P. J. Kulesza, and P. Schmuki, Electrochem. Comm. 7 (2005) 1417-1422.

DOI: 10.1016/j.elecom.2005.09.031

Google Scholar

[7] D. Fang, Z. Lio, K. Huang, and D. C. Lagoudas, App. Surface S. 257 (2011) 6451-6461.

Google Scholar

[8] N.B. Kondrikov, P.L. Titov, S.A. Schegoleva, M.A. Khorin, Phys. Procedia 86 (2017) 37-43.

Google Scholar

[9] D. Jasin, A. Abu-Rabi, S. Mentus, and D. Jovanovic, Electrochim. Acta. 52 (2007) 4581-4588.

Google Scholar

[10] A. Rauf, M. Mehmood, M.A. Rasheed, M. Solid State Electrochem. 13 (2009) 321-332.

Google Scholar

[11] L. Zaraska, G.D. Sulka, M. Jaskuła, J. Solid State Electrochem. 15 (2011) 2427-2436.

Google Scholar

[12] S.P. Petrovic, L. Rozic, Maced. J. Chem. Chem. Eng. 32 (2013) 309-317.

Google Scholar

[13] H. Masuda, F. Hasegwa, S. Ono, J. Electrochem.Soc., 144, 5 (1997) L127-L130.

Google Scholar

[14] J. Choi, R. Wehrspohn, U. Gősele, Electrochimica Acta, 50 (2005) 2591-2595.

Google Scholar

[15] K. Nielsh, J. Choi, K. Schwirn, R. Wehrspohn, U. Gősele, Nanoletters, 2, 7 (2002) 676-680.

Google Scholar

[16] H. Terryn, J. Vereecken, Trans. IMF, 68 (1990) 33-37.

Google Scholar

[17] M.B. Priestley, Spectral analysis and time series, Academic Press, New York, (1982).

Google Scholar

[18] P.F. Dunn, Measurement and Data Analysis for Engineering and Science, McGraw-Hill, New York, (2005).

Google Scholar

[19] V.V. Yudin, P.L. Titov, A.N. Mikhalyuk, Theoretical and Math. Physics, 164 (2010) 905-919.

Google Scholar