[1]
S.R. Dutta, D. Passi, P. Singh, A. Bhuibhar, Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review, Ir. J. Med. Sci. 184 (2015) 101-106.
DOI: 10.1007/s11845-014-1199-8
Google Scholar
[2]
B.G. Barbanti, C. Griffoni, A. Nataloni, M. Manfrini, G. Giavaresi, S. Bandiera, A. Gasbarrini, S. Terzi, R. Ghermandi, G. Tedesco, M. Girolami, M. Tognon, M. Fini, Biomaterials as bone graft substitutes for spine surgery: from preclinical results to clinical study, J. Biol. Regul. Homeost. Agents 31 (2017) 167–181.
DOI: 10.1007/978-3-319-73485-9_8
Google Scholar
[3]
F.Witte, The history of biodegradable magnesium implants: a review, Acta Biomater. 6 (2010) 1680–92.
Google Scholar
[4]
M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials. 27 (2006) 1728–34.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[5]
R. Zeng, W. Dietzel, F. Witte, N. Hort, C. Blawert, Progress and challenge for magnesium alloys as biomaterials, Adv Eng Mater. 10 (2008) B3–B14 [+702].
DOI: 10.1002/adem.200800035
Google Scholar
[6]
F. Witte et al., Degradable biomaterials based on magnesium corrosion, Curr Opin Solid State Mater Sci. 12 (2008) 63–72.
Google Scholar
[7]
J.L. Workinger, R.P. Doyle and J. Bortz, Challenges in the Diagnosis of Magnesium Status, Nutrients. 10(9) (2018) 1202.
DOI: 10.3390/nu10091202
Google Scholar
[8]
H. Hornberger, S. Virtanen A.R. Boccaccini, Biomedical coatings on magnesium alloys – A review, Acta Biomaterialia. 8 (2012) 2442–2455.
DOI: 10.1016/j.actbio.2012.04.012
Google Scholar
[9]
S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, I.E. Vyaliy, K.V. Nadaraia, I.M. Imshinetskiy, A.I. Nikitin, E.P. Subbotin, A.S. Gnedenkov, Magnesium fabricated using additive technology: Specificity of corrosion and protection, J. Alloys Compd. 808 (2019) 151629.
DOI: 10.1016/j.jallcom.2019.07.341
Google Scholar
[10]
Ali, F. Iqbal, A. Ahmad F. Ikram et al., Hydrothermal deposition of high strength calcium phosphate coatings on magnesium alloy for biomedical applications, Surf. Coat. Technol. 357 (2019) 716–727.
DOI: 10.1016/j.surfcoat.2018.09.016
Google Scholar
[11]
Kucharczyk, K. Naplocha, J.W. Kaczmar, H. Dieringa and K.U. Kainer. Current Status and Recent Developments in Porous Magnesium Fabrication, Adv. Eng. Mater. 20 (2018) 1–16.
DOI: 10.1002/adem.201700562
Google Scholar
[12]
S. Liu, C. Zhou, S. Mou, J. Li, M. Zhou, Y. Zeng, C. Luo, J. Sun, Z. Wang, W. Xu, Biocompatible graphene oxide–collagen composite aerogel for enhanced stiffness and in situ bone regeneration, Materials Science & Engineering C. 105 (2019) 110137.
DOI: 10.1016/j.msec.2019.110137
Google Scholar
[13]
I. Schepetkin, A. Khlebnikov and B.S. Kwon, Medical Drugs From Humus Matter: Focus on Mumie, Drug development research. 57 (2002) 140–159.
DOI: 10.1002/ddr.10058
Google Scholar
[14]
S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications, Mater. Sci. Eng., C. 68 (2016) 948–963.
DOI: 10.1016/j.msec.2016.06.020
Google Scholar
[15]
A.B. Podgorbunsky, K.V. Nadaraia, I.M. Imshinetsky, S.L. Sinebryukhov and S.V. Gnedenkov. Formation on magnesium alloy MA8 bioactive coatings containing nanosized hydroxyapatite, J. Phys. Conf. Ser. 1092 (2018) 1–4.
DOI: 10.1088/1742-6596/1092/1/012117
Google Scholar
[16]
A.B. Podgorbunsky, O.O. Shichalin, S.V. Gnedenkov, Composite materials based on magnesium and calcium phosphate compounds, Materials Science Forum. 992 (2020) 796–801.
DOI: 10.4028/www.scientific.net/msf.992.796
Google Scholar
[17]
A.S. Gnedenkov, D. Mei, S.V. Lamaka, S.L. Sinebryukhov, D.V. Mashtalyar, I.E. Vyaliy, M.L. Zheludkevich, S.V. Gnedenkov, Localized currents and pH distributionstudied during corrosion of MA8 Mg alloy in the cell culture medium, Corros. Sci. (2020) (accepted).
DOI: 10.1016/j.corsci.2020.108689
Google Scholar