PEO Coated Porous Mg/HAp Implant Materials Impregnated with Bioactive Components

Article Preview

Abstract:

In this research the results of the formation of composite materials based on magnesium for the needs of implant surgery are discussed. The synthesis of porous magnesium with the inclusion of hydroxyapatite particles was preformed by means of a powder metallurgical mechanochemical process. The resulting samples were impregnated with bioactive additives such as shilajit. To protect against premature corrosion, the samples were coated with plasma electrolytic oxidation (PEO).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

366-371

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.R. Dutta, D. Passi, P. Singh, A. Bhuibhar, Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review, Ir. J. Med. Sci. 184 (2015) 101-106.

DOI: 10.1007/s11845-014-1199-8

Google Scholar

[2] B.G. Barbanti, C. Griffoni, A. Nataloni, M. Manfrini, G. Giavaresi, S. Bandiera, A. Gasbarrini, S. Terzi, R. Ghermandi, G. Tedesco, M. Girolami, M. Tognon, M. Fini, Biomaterials as bone graft substitutes for spine surgery: from preclinical results to clinical study, J. Biol. Regul. Homeost. Agents 31 (2017) 167–181.

DOI: 10.1007/978-3-319-73485-9_8

Google Scholar

[3] F.Witte, The history of biodegradable magnesium implants: a review, Acta Biomater. 6 (2010) 1680–92.

Google Scholar

[4] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials. 27 (2006) 1728–34.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[5] R. Zeng, W. Dietzel, F. Witte, N. Hort, C. Blawert, Progress and challenge for magnesium alloys as biomaterials, Adv Eng Mater. 10 (2008) B3–B14 [+702].

DOI: 10.1002/adem.200800035

Google Scholar

[6] F. Witte et al., Degradable biomaterials based on magnesium corrosion, Curr Opin Solid State Mater Sci. 12 (2008) 63–72.

Google Scholar

[7] J.L. Workinger, R.P. Doyle and J. Bortz, Challenges in the Diagnosis of Magnesium Status, Nutrients. 10(9) (2018) 1202.

DOI: 10.3390/nu10091202

Google Scholar

[8] H. Hornberger, S. Virtanen A.R. Boccaccini, Biomedical coatings on magnesium alloys – A review, Acta Biomaterialia. 8 (2012) 2442–2455.

DOI: 10.1016/j.actbio.2012.04.012

Google Scholar

[9] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, I.E. Vyaliy, K.V. Nadaraia, I.M. Imshinetskiy, A.I. Nikitin, E.P. Subbotin, A.S. Gnedenkov, Magnesium fabricated using additive technology: Specificity of corrosion and protection, J. Alloys Compd. 808 (2019) 151629.

DOI: 10.1016/j.jallcom.2019.07.341

Google Scholar

[10] Ali, F. Iqbal, A. Ahmad F. Ikram et al., Hydrothermal deposition of high strength calcium phosphate coatings on magnesium alloy for biomedical applications, Surf. Coat. Technol. 357 (2019) 716–727.

DOI: 10.1016/j.surfcoat.2018.09.016

Google Scholar

[11] Kucharczyk, K. Naplocha, J.W. Kaczmar, H. Dieringa and K.U. Kainer. Current Status and Recent Developments in Porous Magnesium Fabrication, Adv. Eng. Mater. 20 (2018) 1–16.

DOI: 10.1002/adem.201700562

Google Scholar

[12] S. Liu, C. Zhou, S. Mou, J. Li, M. Zhou, Y. Zeng, C. Luo, J. Sun, Z. Wang, W. Xu, Biocompatible graphene oxide–collagen composite aerogel for enhanced stiffness and in situ bone regeneration, Materials Science & Engineering C. 105 (2019) 110137.

DOI: 10.1016/j.msec.2019.110137

Google Scholar

[13] I. Schepetkin, A. Khlebnikov and B.S. Kwon, Medical Drugs From Humus Matter: Focus on Mumie, Drug development research. 57 (2002) 140–159.

DOI: 10.1002/ddr.10058

Google Scholar

[14] S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications, Mater. Sci. Eng., C. 68 (2016) 948–963.

DOI: 10.1016/j.msec.2016.06.020

Google Scholar

[15] A.B. Podgorbunsky, K.V. Nadaraia, I.M. Imshinetsky, S.L. Sinebryukhov and S.V. Gnedenkov. Formation on magnesium alloy MA8 bioactive coatings containing nanosized hydroxyapatite, J. Phys. Conf. Ser. 1092 (2018) 1–4.

DOI: 10.1088/1742-6596/1092/1/012117

Google Scholar

[16] A.B. Podgorbunsky, O.O. Shichalin, S.V. Gnedenkov, Composite materials based on magnesium and calcium phosphate compounds, Materials Science Forum. 992 (2020) 796–801.

DOI: 10.4028/www.scientific.net/msf.992.796

Google Scholar

[17] A.S. Gnedenkov, D. Mei, S.V. Lamaka, S.L. Sinebryukhov, D.V. Mashtalyar, I.E. Vyaliy, M.L. Zheludkevich, S.V. Gnedenkov, Localized currents and pH distributionstudied during corrosion of MA8 Mg alloy in the cell culture medium, Corros. Sci. (2020) (accepted).

DOI: 10.1016/j.corsci.2020.108689

Google Scholar