Laser Welding of Stainless Steel 321 in Different Welding Positions

Article Preview

Abstract:

It was revealed that spatial position during laser welding of AISI 321 stainless steel influences the processes in the weld pool and the process of its crystallization. The geometry, structure, distribution of chemical elements depend on the cooling rate of the welded joint, which varies in different spatial positions during laser welding of stainless steel AISI 321. To achieve the lowest variance of results and the maximum values of mechanical characteristics of the welded joints of AISI 321 stainless steel it is recommended to produce laser welding in a vertical position.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 313)

Pages:

106-117

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Barzov A, Belov V and Galinovski A 2019 Analysis of the information and diagnostic capability of processing technologies IOP Conference Series: Materials Science and Engineering 683 012027.

DOI: 10.1088/1757-899x/683/1/012027

Google Scholar

[2] Popov V 2017 Numerical simulation of the alloying process during impulse induction heating of the metal substrate AIP Conference Proceedings 1893 030112.

DOI: 10.1063/1.5007570

Google Scholar

[3] Krivtsun I, Reisgen U, Semenov O and Zabirov A. 2016 Modeling of weld pool phenomena in tungsten inert gas, CO2-laser and hybrid (TIG+CO2-laser) welding Journal of Laser Applications 28 022406.

DOI: 10.2351/1.4943994

Google Scholar

[4] Proskuryakov V, Rodionov I, Koshuro V, Fomin A and Borodina S 2019 The influence of the method of applying a smearing layer on the surface characteristics of steel X12CrNiTi18-10 after laser alloying Journal of Physics: Conference Series 1410 012103.

DOI: 10.1088/1742-6596/1410/1/012103

Google Scholar

[5] Lambrakos S 2013 Inverse thermal analysis of 304l stainless steel laser welds. Journal of materials engineering and performance 22 2141-2147.

DOI: 10.1007/s11665-013-0500-8

Google Scholar

[6] Wang Z and Xu Y 2020 Vision-based weld tracking in robotic welding: a review of recent research Transactions on Intelligent Welding Manufacturing (Singapore: Springer) (pp.61-86).

DOI: 10.1007/978-981-13-8192-8_3

Google Scholar

[7] Petrushynets L, Falchenko I, Ustinov A, Novomlynets O and Yushchenko S 2019 Vacuum Diffusion Welding of Intermetallic Alloy ɣ-TiAl with High-Temperature Alloy EI437B Through Nanolayered Interlayers 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON) (pp.542-546).

DOI: 10.1109/ukrcon.2019.8879918

Google Scholar

[8] Lebedev V, Maksimov S, Zhernosekov A and Saraev Y 2015 Controlling weld geometry by means of welding equipment in mechanized and automatic consumable electrode arc welding Welding International 29 379-385.

DOI: 10.1080/09507116.2014.934537

Google Scholar

[9] Kostin V, Berdnikova O, Zukov V, Grigorenko G 2020 Increase of mechanical properties of weld metal of high-strength low-alloy steels. In Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019) 240 (Singapore: Springer) (pp.307-315).

DOI: 10.1007/978-981-15-1742-6_29

Google Scholar

[10] Semenov I, Krivtsun I, Demchenko V, Semenov A, Reisgen U, Mokrov O and Zabirov A 2012 Modelling of binary alloy (Al-Mg) anode evaporation in arc welding Modelling and Simulation in Materials Science and Engineering 20 055009.

DOI: 10.1088/0965-0393/20/5/055009

Google Scholar

[11] Lobanov L, Pashchin N, Mikhodui O and Sidorenko Y 2018 Electric pulse component effect on the stress state of AMg6 aluminum alloy welded joints under electrodynamic treatment Strength of Materials 50 246-253.

DOI: 10.1007/s11223-018-9965-x

Google Scholar

[12] Orishich A, Malikov A, Shelyagin V, Khaskin V and Chayka A 2016 Optimisation of the processes of laser, microplasma and hybrid laser-microplasma welding of aluminium alloys Welding International 30 957-961.

DOI: 10.1080/09507116.2016.1157338

Google Scholar

[13] Ustinov A, Falchenko I, Melnychenko T, Petrushynets L, Liapina K and Shishkin A 2017 Diffusion welding through vacuum-deposited porous interlayers Journal of Materials Processing Technology 247 268-279.

DOI: 10.1016/j.jmatprotec.2017.04.029

Google Scholar

[14] Kim J, Kim S, Kim K, Jung W, Youn D, Lee J and Ki H 2016 Effect of beam size in laser welding of ultra-thin stainless steel foils Journal of Materials Processing Technology 233 125-134.

DOI: 10.1016/j.jmatprotec.2016.02.019

Google Scholar

[15] Bochkarev S, Tsaplin A, Galinovskii A, Abashin M and Barzov A 2017 Ultra-jet diagnosis of heat treated material microstructure Metal Science and Heat Treatment 59 384-388.

DOI: 10.1007/s11041-017-0160-7

Google Scholar

[16] Gardner L, Bu Y and Theofanous M 2016 Laser-welded stainless steel I-sections: Residual stress measurements and column buckling tests Engineering Structures 127, 536-548.

DOI: 10.1016/j.engstruct.2016.08.057

Google Scholar

[17] Markashova L, Berdnikova O, Alekseienko T, Bernatskyi A and Sydorets V 2019 Advances in thin films, nanostructured materials, and coatings. Lecture notes in mechanical engineering (Singapore: Springer) Nanostructures in welded joints and their interconnection with operation properties (pp.119-128).

DOI: 10.1007/978-981-13-6133-3_12

Google Scholar

[18] Shojaati M and Beidokhti B 2017 Characterization of AISI 304/AISI 409 stainless steel joints using different filler materials Construction and Building Materials 147 608-615.

DOI: 10.1016/j.conbuildmat.2017.04.185

Google Scholar

[19] Paton B, Nazarenko O, Nesterenkov V, Morozov A, Litvinov V and Kazimir V 2004 Computer control of electron beam welding with multi-coordinate displacements of the gun and workpiece Avtomaticheskaya Svarka no 5 3-7.

Google Scholar

[20] Chinakhov D, Chinakhova E, Grichin S and Gotovschik Y 2016 Influence of welding with two-jet gas shielding on the shaping of a welding joint IOP Conference Series: Materials Science and Engineering 125 012013.

DOI: 10.1088/1757-899x/125/1/012013

Google Scholar

[21] Wang H 2013 Applications of laser welding in the railway industry. In Handbook of laser welding technologies (Cambridge: Woodhead Publishing) (pp.575-595).

DOI: 10.1533/9780857098771.4.575

Google Scholar

[22] Nesterenkov V, Orsa Y and Khripko K 2019 Renewal of elements and construction units of gas turbine engines by means EBW IOP Conference Series: Materials Science and Engineering 582 012049.

DOI: 10.1088/1757-899x/582/1/012049

Google Scholar

[23] Paton B, Akhonin S and Prilutsky V 2011 Proceding of the 12th World Conference on Titanium (Beijing) (Beijing: Science Press) Development of welding technologies in titanium component manufacturing 2 1585-1591.

Google Scholar

[24] Knysh V, Solovei S, Nyrkova L, Klochkov I and Motrunich S 2019 Influence of the atmosphere corrosion on the fatigue life of welded T-joints treated by high frequency mechanical impact Procedia Structural Integrity 16 73-80.

DOI: 10.1016/j.prostr.2019.07.024

Google Scholar

[25] Yerofeyev V, Logvinov R, Nesterenkov V and Mazo A 2014 Formation of the equivalent heat source for calculating strains in structures in electron beam welding Welding International 28 557-561.

DOI: 10.1080/09507116.2013.840042

Google Scholar

[26] Cho J, Boyce D and Dawson P 2005 Modeling strain hardening and texture evolution in friction stir welding of stainless steel Materials Science and Engineering: A 398 146-163.

DOI: 10.1016/j.msea.2005.03.002

Google Scholar

[27] Matilainen V, Pekkarinen J and Salminen A 2016 Weldability of additive manufactured stainless steel Physics Procedia 83 808-817.

DOI: 10.1016/j.phpro.2016.08.083

Google Scholar

[28] Reitemeyer D 2013 Laser welding of large scale stainless steel aircraft structures Physics Procedia 41 106-111.

DOI: 10.1016/j.phpro.2013.03.057

Google Scholar

[29] Zhang Z, Wang Z, Jiang Y, Tan H, Han D, Guo Y and Li J 2012 Effect of post-weld heat treatment on microstructure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds Corrosion Science 62 42-50.

DOI: 10.1016/j.corsci.2012.04.047

Google Scholar

[30] Kuryntsev S and Gilmutdinov A 2015 Welding of stainless steel using defocused laser beam Journal of Constructional Steel Research 114 305-313.

DOI: 10.1016/j.jcsr.2015.08.004

Google Scholar

[31] Su J, Zhang Z, Xiao M, Ye Z and Yang Y 2019 Effects of ambient pressure on single-pulse laser processing of austenite stainless steel Journal of Materials Processing Technology 263 59-72.

DOI: 10.1016/j.jmatprotec.2018.07.015

Google Scholar

[32] Bernatskyi A, Sydorets V, Berdnikova O, Krivtsun I and Chinakhov D 2020 Pore formation during laser welding in different spatial positions Solid State Phenomena 303 47-58.

DOI: 10.4028/www.scientific.net/ssp.303.47

Google Scholar

[33] Karlsson L 2012 Welding duplex stainless steels - A review of current recommendations Welding in the World 56 65-76.

DOI: 10.1007/bf03321351

Google Scholar

[34] Bernatskyi A, Berdnikova O, Klochkov I, Sydorets V and Chinakhov D 2019 Laser welding in different spatial positions of T-joints of austenitic steel. IOP Conference Series: Materials Science and Engineering 582 012048.

DOI: 10.1088/1757-899x/582/1/012048

Google Scholar

[35] Fersini M, Sorrentino S and Zilli G 2010 Duplex stainless steel for bridges construction: comparison between SAW and Laser-GMA hybrid welding Welding in the World 54 R123-R133.

DOI: 10.1007/bf03263498

Google Scholar

[36] Mittelstädt C, Seefeld T, Woizeschke P and Vollertsen F 2018 Laser welding of hidden T-joints with lateral beam oscillation. Procedia CIRP 74 456-460.

DOI: 10.1016/j.procir.2018.08.151

Google Scholar

[37] Alcock J and Baufeld Bb2017 Diode laser welding of stainless steel 304L Journal of Materials Processing Technology 240 138-144.

DOI: 10.1016/j.jmatprotec.2016.09.019

Google Scholar

[38] Reisgen U, Krivtsun I, Gerhards B and Zabirov A 2016 Experimental research of hybrid welding processes in combination of gas tungsten arc with CO2- or Yb:YAG-laser beam Journal of Laser Applications 28 022402.

DOI: 10.2351/1.4944096

Google Scholar

[39] Shelyagin V, Khaskin V, Bernatskyi A, Siora A, Sydorets V and Chinakhov D 2018 Multi-pass laser and hybrid laser-arc narrow-gap welding of steel butt joints Materials Science Forum 927 64-71.

DOI: 10.4028/www.scientific.net/msf.927.64

Google Scholar

[40] Kuznetsov M, Larin M and Sorokin A 2019 Features of laser welding light constructions from cryogenic austenitic steel 316L Key Engineering Materials 822 512-519.

DOI: 10.4028/www.scientific.net/kem.822.512

Google Scholar

[41] Poznyakov V, Markashova L, Shelyagin V, Zhdanov S, Bernats'kyi A, Berdnikova O and Sydorets V 2020 Cold cracking resistance of butt joints in high-strength steels with different welding techniques Strength of Materials 51 843-851.

DOI: 10.1007/s11223-020-00132-7

Google Scholar

[42] Saunders N and Miodownik A 1998 CALPHAD (calculation of phase diagrams): a comprehensive guide (Oxford: Elsevier Science).

Google Scholar

[43] Fan Z, Tsakiropoulos P and Miodownik A 1994 A generalized law of mixtures Journal of Materials Science 29 141-150.

DOI: 10.1007/bf00356585

Google Scholar

[44] Lukas H, Fries S and Sundman B 2007 Computational thermodynamics: the Calphad method 131 Cambridge: Cambridge university press.

DOI: 10.1017/cbo9780511804137

Google Scholar

[45] Gryhorenko G, Kostin V and Gryhorenko S 2018 Design technique for assumption equilibrium state diagrams and thermokinetic transformations of titanium alloys of a Ti-Al system Metallofizika i Noveishie Tekhnologii 40 no 1 23-35.

DOI: 10.15407/mfint.40.01.0023

Google Scholar

[46] Dinsdale A 1991 SGTE data for pure substances Calphad 15 no 4 317-425.

DOI: 10.1016/0364-5916(91)90030-n

Google Scholar

[47] Akhonin S, Belous Y, Muzhichenko A and Selin R 2013 Mathematical modeling of structural transformations in HAZ of titanium alloy VT23 during TIG welding The Paton Welding J no 3 24-27.

DOI: 10.15407/tpwj2018.08.05

Google Scholar

[48] Orlov N 1986 A method of calculating selfconsistent potentials for a mixture of chemical elements USSR Computational Mathematics and Mathematical Physics 26 no 4 165-170.

DOI: 10.1016/0041-5553(86)90092-3

Google Scholar