[1]
Barzov A, Belov V and Galinovski A 2019 Analysis of the information and diagnostic capability of processing technologies IOP Conference Series: Materials Science and Engineering 683 012027.
DOI: 10.1088/1757-899x/683/1/012027
Google Scholar
[2]
Popov V 2017 Numerical simulation of the alloying process during impulse induction heating of the metal substrate AIP Conference Proceedings 1893 030112.
DOI: 10.1063/1.5007570
Google Scholar
[3]
Krivtsun I, Reisgen U, Semenov O and Zabirov A. 2016 Modeling of weld pool phenomena in tungsten inert gas, CO2-laser and hybrid (TIG+CO2-laser) welding Journal of Laser Applications 28 022406.
DOI: 10.2351/1.4943994
Google Scholar
[4]
Proskuryakov V, Rodionov I, Koshuro V, Fomin A and Borodina S 2019 The influence of the method of applying a smearing layer on the surface characteristics of steel X12CrNiTi18-10 after laser alloying Journal of Physics: Conference Series 1410 012103.
DOI: 10.1088/1742-6596/1410/1/012103
Google Scholar
[5]
Lambrakos S 2013 Inverse thermal analysis of 304l stainless steel laser welds. Journal of materials engineering and performance 22 2141-2147.
DOI: 10.1007/s11665-013-0500-8
Google Scholar
[6]
Wang Z and Xu Y 2020 Vision-based weld tracking in robotic welding: a review of recent research Transactions on Intelligent Welding Manufacturing (Singapore: Springer) (pp.61-86).
DOI: 10.1007/978-981-13-8192-8_3
Google Scholar
[7]
Petrushynets L, Falchenko I, Ustinov A, Novomlynets O and Yushchenko S 2019 Vacuum Diffusion Welding of Intermetallic Alloy ɣ-TiAl with High-Temperature Alloy EI437B Through Nanolayered Interlayers 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON) (pp.542-546).
DOI: 10.1109/ukrcon.2019.8879918
Google Scholar
[8]
Lebedev V, Maksimov S, Zhernosekov A and Saraev Y 2015 Controlling weld geometry by means of welding equipment in mechanized and automatic consumable electrode arc welding Welding International 29 379-385.
DOI: 10.1080/09507116.2014.934537
Google Scholar
[9]
Kostin V, Berdnikova O, Zukov V, Grigorenko G 2020 Increase of mechanical properties of weld metal of high-strength low-alloy steels. In Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019) 240 (Singapore: Springer) (pp.307-315).
DOI: 10.1007/978-981-15-1742-6_29
Google Scholar
[10]
Semenov I, Krivtsun I, Demchenko V, Semenov A, Reisgen U, Mokrov O and Zabirov A 2012 Modelling of binary alloy (Al-Mg) anode evaporation in arc welding Modelling and Simulation in Materials Science and Engineering 20 055009.
DOI: 10.1088/0965-0393/20/5/055009
Google Scholar
[11]
Lobanov L, Pashchin N, Mikhodui O and Sidorenko Y 2018 Electric pulse component effect on the stress state of AMg6 aluminum alloy welded joints under electrodynamic treatment Strength of Materials 50 246-253.
DOI: 10.1007/s11223-018-9965-x
Google Scholar
[12]
Orishich A, Malikov A, Shelyagin V, Khaskin V and Chayka A 2016 Optimisation of the processes of laser, microplasma and hybrid laser-microplasma welding of aluminium alloys Welding International 30 957-961.
DOI: 10.1080/09507116.2016.1157338
Google Scholar
[13]
Ustinov A, Falchenko I, Melnychenko T, Petrushynets L, Liapina K and Shishkin A 2017 Diffusion welding through vacuum-deposited porous interlayers Journal of Materials Processing Technology 247 268-279.
DOI: 10.1016/j.jmatprotec.2017.04.029
Google Scholar
[14]
Kim J, Kim S, Kim K, Jung W, Youn D, Lee J and Ki H 2016 Effect of beam size in laser welding of ultra-thin stainless steel foils Journal of Materials Processing Technology 233 125-134.
DOI: 10.1016/j.jmatprotec.2016.02.019
Google Scholar
[15]
Bochkarev S, Tsaplin A, Galinovskii A, Abashin M and Barzov A 2017 Ultra-jet diagnosis of heat treated material microstructure Metal Science and Heat Treatment 59 384-388.
DOI: 10.1007/s11041-017-0160-7
Google Scholar
[16]
Gardner L, Bu Y and Theofanous M 2016 Laser-welded stainless steel I-sections: Residual stress measurements and column buckling tests Engineering Structures 127, 536-548.
DOI: 10.1016/j.engstruct.2016.08.057
Google Scholar
[17]
Markashova L, Berdnikova O, Alekseienko T, Bernatskyi A and Sydorets V 2019 Advances in thin films, nanostructured materials, and coatings. Lecture notes in mechanical engineering (Singapore: Springer) Nanostructures in welded joints and their interconnection with operation properties (pp.119-128).
DOI: 10.1007/978-981-13-6133-3_12
Google Scholar
[18]
Shojaati M and Beidokhti B 2017 Characterization of AISI 304/AISI 409 stainless steel joints using different filler materials Construction and Building Materials 147 608-615.
DOI: 10.1016/j.conbuildmat.2017.04.185
Google Scholar
[19]
Paton B, Nazarenko O, Nesterenkov V, Morozov A, Litvinov V and Kazimir V 2004 Computer control of electron beam welding with multi-coordinate displacements of the gun and workpiece Avtomaticheskaya Svarka no 5 3-7.
Google Scholar
[20]
Chinakhov D, Chinakhova E, Grichin S and Gotovschik Y 2016 Influence of welding with two-jet gas shielding on the shaping of a welding joint IOP Conference Series: Materials Science and Engineering 125 012013.
DOI: 10.1088/1757-899x/125/1/012013
Google Scholar
[21]
Wang H 2013 Applications of laser welding in the railway industry. In Handbook of laser welding technologies (Cambridge: Woodhead Publishing) (pp.575-595).
DOI: 10.1533/9780857098771.4.575
Google Scholar
[22]
Nesterenkov V, Orsa Y and Khripko K 2019 Renewal of elements and construction units of gas turbine engines by means EBW IOP Conference Series: Materials Science and Engineering 582 012049.
DOI: 10.1088/1757-899x/582/1/012049
Google Scholar
[23]
Paton B, Akhonin S and Prilutsky V 2011 Proceding of the 12th World Conference on Titanium (Beijing) (Beijing: Science Press) Development of welding technologies in titanium component manufacturing 2 1585-1591.
Google Scholar
[24]
Knysh V, Solovei S, Nyrkova L, Klochkov I and Motrunich S 2019 Influence of the atmosphere corrosion on the fatigue life of welded T-joints treated by high frequency mechanical impact Procedia Structural Integrity 16 73-80.
DOI: 10.1016/j.prostr.2019.07.024
Google Scholar
[25]
Yerofeyev V, Logvinov R, Nesterenkov V and Mazo A 2014 Formation of the equivalent heat source for calculating strains in structures in electron beam welding Welding International 28 557-561.
DOI: 10.1080/09507116.2013.840042
Google Scholar
[26]
Cho J, Boyce D and Dawson P 2005 Modeling strain hardening and texture evolution in friction stir welding of stainless steel Materials Science and Engineering: A 398 146-163.
DOI: 10.1016/j.msea.2005.03.002
Google Scholar
[27]
Matilainen V, Pekkarinen J and Salminen A 2016 Weldability of additive manufactured stainless steel Physics Procedia 83 808-817.
DOI: 10.1016/j.phpro.2016.08.083
Google Scholar
[28]
Reitemeyer D 2013 Laser welding of large scale stainless steel aircraft structures Physics Procedia 41 106-111.
DOI: 10.1016/j.phpro.2013.03.057
Google Scholar
[29]
Zhang Z, Wang Z, Jiang Y, Tan H, Han D, Guo Y and Li J 2012 Effect of post-weld heat treatment on microstructure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds Corrosion Science 62 42-50.
DOI: 10.1016/j.corsci.2012.04.047
Google Scholar
[30]
Kuryntsev S and Gilmutdinov A 2015 Welding of stainless steel using defocused laser beam Journal of Constructional Steel Research 114 305-313.
DOI: 10.1016/j.jcsr.2015.08.004
Google Scholar
[31]
Su J, Zhang Z, Xiao M, Ye Z and Yang Y 2019 Effects of ambient pressure on single-pulse laser processing of austenite stainless steel Journal of Materials Processing Technology 263 59-72.
DOI: 10.1016/j.jmatprotec.2018.07.015
Google Scholar
[32]
Bernatskyi A, Sydorets V, Berdnikova O, Krivtsun I and Chinakhov D 2020 Pore formation during laser welding in different spatial positions Solid State Phenomena 303 47-58.
DOI: 10.4028/www.scientific.net/ssp.303.47
Google Scholar
[33]
Karlsson L 2012 Welding duplex stainless steels - A review of current recommendations Welding in the World 56 65-76.
DOI: 10.1007/bf03321351
Google Scholar
[34]
Bernatskyi A, Berdnikova O, Klochkov I, Sydorets V and Chinakhov D 2019 Laser welding in different spatial positions of T-joints of austenitic steel. IOP Conference Series: Materials Science and Engineering 582 012048.
DOI: 10.1088/1757-899x/582/1/012048
Google Scholar
[35]
Fersini M, Sorrentino S and Zilli G 2010 Duplex stainless steel for bridges construction: comparison between SAW and Laser-GMA hybrid welding Welding in the World 54 R123-R133.
DOI: 10.1007/bf03263498
Google Scholar
[36]
Mittelstädt C, Seefeld T, Woizeschke P and Vollertsen F 2018 Laser welding of hidden T-joints with lateral beam oscillation. Procedia CIRP 74 456-460.
DOI: 10.1016/j.procir.2018.08.151
Google Scholar
[37]
Alcock J and Baufeld Bb2017 Diode laser welding of stainless steel 304L Journal of Materials Processing Technology 240 138-144.
DOI: 10.1016/j.jmatprotec.2016.09.019
Google Scholar
[38]
Reisgen U, Krivtsun I, Gerhards B and Zabirov A 2016 Experimental research of hybrid welding processes in combination of gas tungsten arc with CO2- or Yb:YAG-laser beam Journal of Laser Applications 28 022402.
DOI: 10.2351/1.4944096
Google Scholar
[39]
Shelyagin V, Khaskin V, Bernatskyi A, Siora A, Sydorets V and Chinakhov D 2018 Multi-pass laser and hybrid laser-arc narrow-gap welding of steel butt joints Materials Science Forum 927 64-71.
DOI: 10.4028/www.scientific.net/msf.927.64
Google Scholar
[40]
Kuznetsov M, Larin M and Sorokin A 2019 Features of laser welding light constructions from cryogenic austenitic steel 316L Key Engineering Materials 822 512-519.
DOI: 10.4028/www.scientific.net/kem.822.512
Google Scholar
[41]
Poznyakov V, Markashova L, Shelyagin V, Zhdanov S, Bernats'kyi A, Berdnikova O and Sydorets V 2020 Cold cracking resistance of butt joints in high-strength steels with different welding techniques Strength of Materials 51 843-851.
DOI: 10.1007/s11223-020-00132-7
Google Scholar
[42]
Saunders N and Miodownik A 1998 CALPHAD (calculation of phase diagrams): a comprehensive guide (Oxford: Elsevier Science).
Google Scholar
[43]
Fan Z, Tsakiropoulos P and Miodownik A 1994 A generalized law of mixtures Journal of Materials Science 29 141-150.
DOI: 10.1007/bf00356585
Google Scholar
[44]
Lukas H, Fries S and Sundman B 2007 Computational thermodynamics: the Calphad method 131 Cambridge: Cambridge university press.
DOI: 10.1017/cbo9780511804137
Google Scholar
[45]
Gryhorenko G, Kostin V and Gryhorenko S 2018 Design technique for assumption equilibrium state diagrams and thermokinetic transformations of titanium alloys of a Ti-Al system Metallofizika i Noveishie Tekhnologii 40 no 1 23-35.
DOI: 10.15407/mfint.40.01.0023
Google Scholar
[46]
Dinsdale A 1991 SGTE data for pure substances Calphad 15 no 4 317-425.
DOI: 10.1016/0364-5916(91)90030-n
Google Scholar
[47]
Akhonin S, Belous Y, Muzhichenko A and Selin R 2013 Mathematical modeling of structural transformations in HAZ of titanium alloy VT23 during TIG welding The Paton Welding J no 3 24-27.
DOI: 10.15407/tpwj2018.08.05
Google Scholar
[48]
Orlov N 1986 A method of calculating selfconsistent potentials for a mixture of chemical elements USSR Computational Mathematics and Mathematical Physics 26 no 4 165-170.
DOI: 10.1016/0041-5553(86)90092-3
Google Scholar