The Sectors Workpieces and Drum Reel’s Die Cubes Electroslag Casting with Exothermic Electrical Conductive Fluxes

Article Preview

Abstract:

It has been established that the developed method of manufacturing workpieces for the sectors of the drums of X20CrMoWV3 steel reel’s and die cubes from X5CrNiMo steel using a solid start and exothermic flux significantly reduces the complexity of their manufacture. The cast reel’s drum sectors workpieces and die cubes, obtained by the electroslag remelting (ESR) method, had a smooth surface without corrugations, sinkers, and slag inclusions. Heat treatment provides the required mechanical properties and the absence of flocs in the cast electroslag metal. An effective way to increase the performance of electroslag processes is using the exothermic flux, which contain scale, ferroalloys, aluminum powder and standard flux (welding flux ISO 14174 – S F AF3, etc.) in quantities sufficient for the exothermic reactions to occur, which ensures the generation of additional heat in the starting period of electroslag processes and contributes to the accelerated induction of the slag bath of the required volume at the “solid” start both monofilar and bifilar schemes of conducting the process instead of the “liquid” start. Electroslag processes using an exothermic alloyed flux on a “hard” start allow to obtain (compared to existing methods of slag bath formation) an increasing in the output of a suitable metal 2...10 %; saving on melting 1 kg of standard flux 1.2...1.4 kW h; reducing of the starting time of the ESR process to 25 %.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 313)

Pages:

118-126

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Grinyuk, B.C Proizvodstvo krupnyh shtampovyh zagotovok metodom ESHL. Problemy specialnoj elektrometallurgii. № 8 (1978), pp.31-38.

Google Scholar

[2] Kubarev B.I., Shaparov, V.V. Izgotovlenie detalej metodom EShP i EShL. Informacionnyj listok: 007-78, series 10-05. - M.: NIIINFORMTYAZHMASH. - (1978).

Google Scholar

[3] A.s. 383530 SSSR MKI V22D. Ekzotermicheskaya shlakoobrazuyushaya smes/ A.M. Uznenko i dr. (SSSR). - № 1682680 / 02.22; stated 09.08.71; publ. 1973; Bull. № 24.

Google Scholar

[4] A.s. 926025 SSSR MKI3 V22D. Ekzotermicheskaya smes dlya rafinirovaniya metalla/ N.F. Parahin i dr. - № 2966952 / 02.22; stated 07.29.80; opubl.1982; Bulletin 17.

Google Scholar

[5] Kowal, A.K., Lyamtsev K.K. Vliyanie sposobov degazacii flyusa i zashity plavilnogo prostranstva na povedenie vodoroda pri EShP. Problemy specialnoj metallurgii. № 11 (1979). S. 13-19.

Google Scholar

[6] Paton, B.E., Medovar, B.I. Elektroshlakovyj metal. –Kiev: Naukova Dumka, 1981. 680 s.

Google Scholar

[7] Paton, B.E., Medovar, B.I., Boyko G.A. Elektroshlakovoe lit`e. M.: NIImash, 1974. 68 s.

Google Scholar

[8] Vlasov, A.F. Chigarev, V.V., Makarenko, N.A. Ekzotermicheskie smesi i flyusy v svarochnom i metallurgicheskom proizvodstvah: monografiya. Kramatorsk: DGMA, 2015. 367 s. ISBN 978-966-379-752-6.

Google Scholar

[9] Makarenko, N.A., Vlasov A.F., Volkov D.A., Kuschy, A.M. Issledovanie i razrabotka sostavov ekzotermicheskih flyusov dlya elektroshlakovyh processov. Sovremennaya elektrometallurgiya. Kiev. № 2 (2015), pp.10-16.

Google Scholar

[10] Vlasov, A.F. Makarenko, N.A., Chigarev, V.V., Volkov, D.A. Fizicheskaya model elektroshlakovogo processa na tverdom, starte s primeneniem ekzotermicheskih elektroprovodnyh flyusov. Tehnologiya mashinostroeniya. № 5 (2015), pp.56-60.

Google Scholar

[11] Vlasov, A.F., Boguckij, A.A. Elektroshlakovyj pereplav na tverdom, starte po monofilyarnoj sheme vedeniya processa s ispolzovaniem ekzotermicheskih elektroprovodnyh flyusov. Tehnologiya mashinostroeniya. № 2 (2015), pp.5-10.

Google Scholar

[12] Vlasov, A.F. Makarenko, N.A. Elektroshlakovyj pereplav na tverdom, starte po bifilyarnoj sheme vedeniya processa s ispolzovaniem ekzotermicheskih elektroprovodnyh flyusov. Svarochnoe proizvodstvo. № 4 (2014), pp.20-25.

Google Scholar

[13] Vlasov, A.F. Vliyanie elektroshlakovogo pereplava na svojstva litoj shtampovoj stali X5CrNiMo. Problemy specialnoj elektrometallurgii. № 2 (1989), pp.23-29.

Google Scholar

[14] Vlasov, A.F. Elektroshlakovoe lite kolenchatogo vala gazomotokompressora MK-08 iz stali X34CrNiMo s ispolzovaniem ekzotermicheskih elektroprovodnyh flyusov. Tehnologiya mashinostroeniya. № 9 (2013), pp.10-15.

Google Scholar

[15] A.s. 1533346 SSSR. SU A1. С22 В9/18. Sposob starta elektroshlakovogo pereplava / A.F. Vlasov i dr. (SSSR). Zayavl.16.02.88, ne publ.

Google Scholar

[16] Shkolnik, L.M. Metodika ustalostnyh ispytanij. Spravochnik, M.: Metallurgiya. - 1978. 304 p.

Google Scholar

[17] Yuzhanin, Zh.I., Tsipunova, I.R., Agafonov, A.S. Izgotovlenie zagotovok kontejnernyh vtulok iz stali X5CrNiMo s pomoshyu elektroshlakovogo litya. Metallovedenie i termicheskaya obrabotka. № 6 (1979), pp.53-55.

Google Scholar

[18] Kudryavtsev, I.V., Naumchenko, N.E., Savina N.M. Ustalost krupnyh detalej mashin. M.: Mashinostroenie, 1981. 240 p.

Google Scholar

[19] Chinakhov D.A., Grigorieva E.G., Mayorova E.I. Study of gasdynamic effet upon the weld geometry when concumable electrode welding. IOP Conf. Series: Materials Science and Engineering 127 (2016) 012013.

DOI: 10.1088/1757-899x/127/1/012013

Google Scholar

[20] Chinakhov D.A., Agrenich E.P. Computer simulation of thermo-mechanical processes at fusion welding of alloyed steels. Materials Science Forum.  Vols. 575-578 (2008). Pp. 833-836.

DOI: 10.4028/www.scientific.net/msf.575-578.833

Google Scholar

[21] Chinakhov D.A., Grigorieva E.G., Mayorova E.I., Kartsev D.S. The influence of shielding gas flow rate on the transfer frequency of electrode metals drops. IOP Conf. Series: Materials Science and Engineering 142 (2016) 012005.

DOI: 10.1088/1757-899x/142/1/012005

Google Scholar

[22] Markov, O.E., Gerasimenko, O.V., Kukhar, V.V., Abdulov, O.R., & Ragulina, N.V. (2019). Computational and experimental modeling of new forging workpieces with a directional solidification: the relative heights of 1.1. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(8), 310. http://doi.org/10.1007/s40430-019-1810-z.

DOI: 10.1007/s40430-019-1810-z

Google Scholar

[23] Markov, O.E., Gerasimenko, O.V., Shapoval, A.A., Abdulov, O.R., & Zhytnikov, R.U. (2019). Computerized simulation of shortened workpieces with a controlled crystallization for manufacturing of high-quality forgings. The International Journal of Advanced Manufacturing Technology, 103, 3057–3065. doi: http://doi.org/10.1007/s00170-019-03749-4.

DOI: 10.1007/s00170-019-03749-4

Google Scholar

[24] Markov, O, Zlygoriev, V, Gerasimenko, O, Hrudkina, N, Shevtsov, S (2018) Improving the quality of forgings based on upsetting the workpieces with concave facets. Eastern-European Journal of Enterprise Technologies 5/1(95): 16-24. http://doi.org/10.15587/1729-4061.2018.142674.

DOI: 10.15587/1729-4061.2018.142674

Google Scholar

[25] Markov, O.E., Perig, A.V., Zlygoriev V.N., Markova M.A., Kosilov, M.S. (2017) Development of forging processes using intermediate workpiece profiling before drawing: research into strained state. J Braz. Soc. Mech. Sci. Eng. 39(4): 4649–4665. https://doi.org/10.1007/S40430-017-0812-Y.

DOI: 10.1007/s40430-017-0812-y

Google Scholar