[1]
B. Ge, J. Zhang, Modeling of main steam and two-phase heat exchanger for nuclear power unit, 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, Wuhan, (2011) 337-340. https://doi.org/10.1109/CCIENG.2011.6008027.
DOI: 10.1109/ccieng.2011.6008027
Google Scholar
[2]
State enterprise National atomic energy generating company "Energoatom", Strategic development plan of the state enterprise "National atomic energy generating company "Energoatom" for 2018-2022, State enterprise "National atomic energy generating company "Energoatom, (2018). [Online]. Available: http://www.energoatom.com.ua/files/file/ strateg_chniy_plan_2018_2022_04042018.pdf. [Accessed: Nov. 19, 2019]. [in Ukrainian].
DOI: 10.15276/opu.1.57.2019.09
Google Scholar
[3]
H. Bastida, C.E. Ugalde-Loo, M. Abeysekera, X. Xu, M. Qadrdan, Dynamic modelling and control of counter-flow heat exchangers for heating and cooling systems, 2019 54th International Universities Power Engineering Conference (UPEC), Bucharest, Romania (2019) 1-6.
DOI: 10.1109/upec.2019.8893634
Google Scholar
[4]
J. Xu, R.Z. Wang, Y. Li, A review of available technologies for seasonal thermal energy storage, Solar Energy 103 (2014) 610-638. https://doi.org/10.1016/j.solener.2013.06.006.
DOI: 10.1016/j.solener.2013.06.006
Google Scholar
[5]
S. Plankovskyy, Y. Tsegelnyk, O. Shypul, A. Pankratov, T. Romanova, Cutting irregular objects from the rectangular metal sheet, In: M. Nechyporuk, V. Pavlikov, D. Kritskiy (Eds.), Integrated Computer Technologies in Mechanical Engeneering, Advances in Intelligent Systems and Computing 113 (2020) 150-157. https://doi.org/10.1007/978-3-030-37618-5_14.
DOI: 10.1007/978-3-030-37618-5_14
Google Scholar
[6]
T. Baumann, S. Zunft, R. Tamme, Moving bed heat exchangers for use with heat storage in concentrating solar plants: a multiphase model, Heat Transfer Eng. 35 (2013) 224-231.
DOI: 10.1080/01457632.2013.825154
Google Scholar
[7]
V.D. Shelyagin, A.V. Bernatskyi, O.M. Berdnikova, V.M. Sydorets, O.V. Siora, S.G. Gryhorenko, Effect of technological features of laser welding of titanium-aluminium structures on the microstructure formation of welded joints, Metallofiz. Noveishie Tekhnol. 42(3) (2020) 363-379 [in Ukrainian]. https://doi.org/10.15407/mfint.42.03.0363.
DOI: 10.15407/mfint.42.03.0363
Google Scholar
[8]
O.H. Strelko, H.I. Kyrychenko, Y.A. Berdnychenko, O.L. Sorochynska, O.Y. Pylypchuk, Application of information technologies for automation of railway and cargo owner interaction, IOP Conf. Ser. Mater. Sci. Eng. 582(1) (2019) 012029. https://doi.org/10.1088/1757-899X/582/1/012029.
DOI: 10.1088/1757-899x/582/1/012029
Google Scholar
[9]
D.A. Chinakhov, E.G. Grigorieva, E.I. Mayorova, Study of gasdynamic effect upon the weld geometry when consumable electrode welding, IOP Conf. Ser. Mater. Sci. Eng. 127 (2016) 012013. https://doi.org/10.1088/1757-899x/127/1/012013.
DOI: 10.1088/1757-899x/127/1/012013
Google Scholar
[10]
F. Middleton, An all metal UHV flange seal for dissimilar materials, IEEE Trans. Nucl. Sci. 28(3) (1981) 3298-3299. https://doi.org/10.1109/TNS.1981.4332084.
DOI: 10.1109/tns.1981.4332084
Google Scholar
[11]
Q. Yin, Y. Li, Straight wave UT technical for dissimilar metal weld of nozzle to safe-end in reactor pressure vessel, 2014 IEEE Far East Forum on Nondestructive Evaluation/Testing, Chengdu (2014) 122-127. https://doi.org/10.1109/FENDT.2014. 6928246.
DOI: 10.1109/fendt.2014.6928246
Google Scholar
[12]
H. Chen, Z. Yu, W. Wang, G. Ma, M. Hong, Research on ultrasonic inspection of control rod drive mechanism housing weld in Chinese Evolutionary Pressurized Reactor nuclear power plant, 2014 IEEE Far East Forum on Nondestructive Evaluation/Testing, Chengdu (2014) 128-134.
DOI: 10.1109/fendt.2014.6928247
Google Scholar
[13]
L.V. Petrushynets, I.V. Falchenko, A.I. Ustinov, O.O. Novomlynets, S.M. Yushchenko, Vacuum diffusion welding of intermetallic alloy ɣ-TiAl with high-temperature alloy EI437B through nanolayered interlayers through nanolayered interlayers, 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine (2019) 542-546. https://doi.org/10.1109/UKRCON.2019.8879918.
DOI: 10.1109/ukrcon.2019.8879918
Google Scholar
[14]
J. Thamprajamjit, P. Surin, Dissimilar metal joining between stainless steel SUS304 and carbon steel SS400 using plasma arc welding process, 2018 2nd International Conference on Engineering Innovation (ICEI), Bangkok (2018) 42-45. https://doi.org/10.1109/ ICEI18.2018.8448663.
DOI: 10.1109/icei18.2018.8448663
Google Scholar
[15]
M. Cavallini, P. Veronesi, L. Lusvarghi, E. Colombini, R. Giovanardi, L. Rigon, Optimization of laser welding of dissimilar corrosion resistant alloys, 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena (2017) 1-5.
DOI: 10.1109/rtsi.2017.8065935
Google Scholar
[16]
L.I., Markashova, V.V. Arsenyuk, G.M. Grigorenko, E.N. Berdnikova, Special features of the mass transfer processes upon pressure welding the dissimilar metals. Svarochnoe Proizvodstvo 4 (2004) 28-35.
DOI: 10.1533/wint.2004.3357
Google Scholar
[17]
Y. Fang, X. Jiang, D. Mo, D. Zhu, Z. Luo, A review on dissimilar metals' welding methods and mechanisms with interlayer, Int. J. Adv. Manuf. Technol. 102(9-12) (2019) 2845-2863.
DOI: 10.1007/s00170-019-03353-6
Google Scholar
[18]
T.E. Abioye, T.O. Olugbade, T.I. Ogedengbe, Welding of dissimilar metals using gas metal arc and laser welding techniques: a review, Journal of Emerging Trends in Engineering and Applied Sciences, 8(6) (2017) 225-228.
Google Scholar
[19]
L.I. Markashova, V.V. Arsenyuk, E.N. Berdnikova, I.L. Bogajchuk, Peculiarities of vapor formation under the condition of pressure welding of dissimilar materials at high deformation rates, Metallofiz. Noveishie Tekhnol. 23(10) (2001) 1403-1417 [in Russian].
Google Scholar
[20]
O.V. Siora, A.V. Bernatskyi, Development of basic processing methods of laser welding of joints of dissimilar metals, Metallofiz. Noveishie Tekhnol. 33(569) (2011). [in Russian].
Google Scholar
[21]
K. Martinsen, S.J. Hu, B.E. Carlson, Joining of dissimilar materials, CIRP Annals 64(2) (2015) 679-699. https://doi.org/10.1016/j.cirp.2015.05.006.
DOI: 10.1016/j.cirp.2015.05.006
Google Scholar
[22]
PGV-1000M steam generator. Description and main features, desnogorskspektr. [Online]. Available: http://desnogorskspektr.ru/aes/teoriya-aes/parogenerator-pgv-1000m.-description-and-basic-characteristics.html. [Accessed: Nov. 19, 2019]. [in Russian].
Google Scholar
[23]
O.P. Shugaylo, Stress-strain state of tubular elements of steam generators in emergency situations, Ph.D. dissertation, NAS of Ukraine, S.P. Tymoshenko Institute of Mechanics. Kyiv, (2019). [in Ukrainian].
Google Scholar
[24]
IAEA-TECDOC-1577. Strategy for assessment of WWER steam generator tube integrity, Vienna: IAEA, (2007).
Google Scholar
[25]
T.Kh. Margulova, Nuclear power plants. Moscow: Higher School, 1984. [in Russian].
Google Scholar
[26]
M.M. Zarazovskii, Borodii, V. Kozlov, Risk-informed approach to structure integrity prediction and optimization of in-service inspection of heat exchange equipment with high defect statistics, Nuclear and Radiation Safety 4 (2016) 32-38. [in Russian].
DOI: 10.32918/nrs.2016.4(72).05
Google Scholar
[27]
V.V. Müller, V.N. Mitroshin, Automatic system of shape weld stabilization with manual and mechanized argon-arc welding by non-consumable electrode, 2018 International Russian Automation Conference (RusAutoCon), Sochi (2018) 1-5.
DOI: 10.1109/rusautocon.2018.8501708
Google Scholar
[28]
M. Bodeau, Mitigating potential hazards of TIG welding on spacecraft, IEEE Trans. Electromagn. Compat. 61(1) (2019) 90-99. https://doi.org/10.1109/TEMC.2018.2813331.
DOI: 10.1109/temc.2018.2813331
Google Scholar
[29]
A.R. Kohandehghan, S. Serajzadeh, A.H. Kokabi, A study on residual stresses in gas tungsten arc welding of AA5251, Mater. Manuf. Process. 25 (2010) 1242-1250.
DOI: 10.1080/10426914.2010.481004
Google Scholar
[30]
D.P. Il'yaschenko, D.A. Chinakhov, R.A. Mamadaliev, Effect of inverter power source characteristics on welding stability and heat affected zone dimensions, IOP Conf. Ser.: Earth Environ. Sci. 115 (2018) 012041. https://doi.org/10.1088/1755-1315/115/1/012041.
DOI: 10.1088/1755-1315/115/1/012041
Google Scholar
[31]
A.D. Razmyshlyaev, M.V. Mironova, A.A. Deli, Speed of metal flows in the pool in arc surfacing in a longitudinal magnetic field, Weld. Int. 24(8) (2010) 627-630. https://doi.org/10.1080/09507111003655531.
DOI: 10.1080/09507111003655531
Google Scholar
[32]
D.P. Il'Yaschenko, D.A. Chinakhov, Y.M. Gotovschik, Investigating the influence of the power supply type upon the properties of the weld joints under manual arc welding, Adv. Mater. Res. 1040 (2014) 837-844. https://doi.org/10.4028/www.scientific.net/AMR.1040.837.
DOI: 10.4028/www.scientific.net/amr.1040.837
Google Scholar
[33]
S.V. Akhonin, R.N. Mishchenko, I.K. Petrichenko, Investigation of the weldability of titanium alloys produced by different methods of melting, Mater. Sci. 42 (2006) 323-329. https://doi.org/10.1007/s11003-006-0086-5.
DOI: 10.1007/s11003-006-0086-5
Google Scholar
[34]
A.D. Razmyshlyayev, M.V. Mironova, S.V. Yarmonov, P.A. Vydmysh, The speed of flows in the pool in arc welding in a transverse magnetic field, Weld. Int. 29(4) (2015) 296-300. https://doi.org/10.1080/09507116.2014.921376.
DOI: 10.1080/09507116.2014.921376
Google Scholar
[35]
D.A. Chinakhov, E.G. Grigorieva, E.I. Mayorova, D.S. Kartsev, The influence of shielding gas flow rate on the transfer frequency of electrode metals drops. IOP Conf. Series: Materials Science and Engineering 142 (2016) 012005 https://doi.org/10.1088/1757-899X/142/1/012005.
DOI: 10.1088/1757-899x/142/1/012005
Google Scholar
[36]
A.F. Vlasov, N.A. Makarenko, A.M. Kushchiy, Using exothermic mixtures in manual arc welding and electroslag processes, Weld. Int. 31(7) (2017) 565-570. https://doi.org/10.1080/09507116.2017.1295561.
DOI: 10.1080/09507116.2017.1295561
Google Scholar
[37]
A.D. Razmyshlyaev, M.V. Ahieieva, Features of arc surfacing process in a longitudinal magnetic field, Appl. Mech. Mater. 682 (2014) 313-318. https://doi.org/10.4028/www.scientific.net/AMM.682.313.
DOI: 10.4028/www.scientific.net/amm.682.313
Google Scholar
[38]
L. Markashova, O. Berdnikova, A. Bernatskyi, M. Iurzhenko, V. Sydorets, Physical and mechanical properties of high-strength steel joints produced by laser welding, 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF), Lviv (2017) 88-91. https://doi.org/10.1109/YSF.2017.8126596.
DOI: 10.1109/ysf.2017.8126596
Google Scholar
[39]
S. Katayama, Handbook of laser welding technologies. Cambridge, Woodhead Publishing Ltd., (2013).
Google Scholar
[40]
A. Kurc-Lisiecka, A. Lisiecki, Laser welding of the new grade of advanced high-strength steel DOMEX 960, Materiali in tehnologije / Materials and technology 51(7) (2017) 199-204.
DOI: 10.17222/mit.2015.158
Google Scholar
[41]
J. Viňáš, M. Ábel, Analysis of laser welds on automotive steel sheets, Mater. Sci. Forum 818 (2015) 239-242. https://doi.org/10.4028/www.scientific.net/MSF.818.239.
DOI: 10.4028/www.scientific.net/msf.818.239
Google Scholar
[42]
V. Shelyagin, V. Khaskin, A. Bernatskyi, A. Siora, V. Sydorets, D. Chinakhov, Multi-pass laser and hybrid laser-arc narrow-gap welding of steel butt joints, Mater. Sci. Forum 927 (2018) 64-71. https://doi.org/10.4028/www.scientific.net/MSF.927.64.
DOI: 10.4028/www.scientific.net/msf.927.64
Google Scholar
[43]
A. Bernatskyi, V. Sydorets, O. Berdnikova, I. Krivtsun, D. Chinakhov, Pore formation during laser welding in different spatial positions, Solid State Phenom. 303 (2020) 47-58. https://doi.org/10.4028/www.scientific.net/SSP.303.47.
DOI: 10.4028/www.scientific.net/ssp.303.47
Google Scholar
[44]
A. Kovács, Integrated task sequencing and path planning for robotic remote laser welding, Int. J. Prod. Res. 54(4) (2016) 1210-1224. https://doi.org/10.1080/00207543.2015.1057626.
DOI: 10.1080/00207543.2015.1057626
Google Scholar
[45]
J. Adamiec, R. Kocurek, Effect of autogenous laser weld on microstructure and mechanical properties of Inconel 617 nickel alloy, Solid State Phenom. 226 (2015) 43-46.
DOI: 10.4028/www.scientific.net/ssp.226.43
Google Scholar
[46]
Technologies for non-destructive testing and repair of NPP components NUSIM 2008 VUJE https://inis.iaea.org/collection/ NCLCollectionStore/_Public/43/124/ 43124116.pdf.
Google Scholar
[47]
L. Markashova, O. Berdnikova, A. Bernatskyi, V. Sydorets and O. Bushma, Crack resistance of 14KhGN2MDAFB high-strength steel joints manufactured by laser welding, IOP Conf. Ser. Earth Environ. Sci. 224(1) (2019) 012013. https://doi.org/10.1088/1755-1315/224/1/012013.
DOI: 10.1088/1755-1315/224/1/012013
Google Scholar
[48]
G. Turichin, M. Kuznetsov, A. Pozdnyakov, S. Gook, A. Gumenyuk, M. Rethmeier, Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel, Procedia CIRP 74 (2018) 748-751. https://doi.org/10.1016/j.procir.2018.08.018.
DOI: 10.1016/j.procir.2018.08.018
Google Scholar
[49]
K.T. Lee, C.S. Park, H.Y. Kim, Fatigue and buckling analysis of automotive components considering forming and welding effects, Int. J. Automot. Technol. 18(1) (2017) 97-102.
DOI: 10.1007/s12239-017-0010-z
Google Scholar
[50]
T. Slezak, L. Sniezek, Fatigue life of welded joints of high-strength structural steel S960QL, Solid State Phenom. 250 (2016) 169-174. https://doi.org/10.4028/www.scientific.net/SSP.250.169.
DOI: 10.4028/www.scientific.net/ssp.250.169
Google Scholar
[51]
H. Vemanaboina, S. Akella, R.K. Buddu, E. Gundabattini, Distortion validation of laser beam welded SS316LN steel plates, 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain (2019) 1-5. https://doi.org/10.1109/ICMSAO.2019.8880444.
DOI: 10.1109/icmsao.2019.8880444
Google Scholar
[52]
H. Murakawa, Residual stress and distortion in laser welding, in: Handbook of Laser Welding Technologies, Cambridge, Woodhead Publishing Ltd., 2013, pp.374-400.
DOI: 10.1533/9780857098771.2.374
Google Scholar
[53]
I. Bunaziv, C. Dorum, X. Ren, M. Eriksson, O. Akselsen, Application of LBW and LAHW for fillet welds of 12 and 15 mm structural steel, Procedia Manufact. 36 (2019) 121-130. https://doi.org/10.1016/j.promfg.2019.08.017.
DOI: 10.1016/j.promfg.2019.08.017
Google Scholar
[54]
S.K. Wu, J.L. Zou, R.S. Xiao, G.W. Zhang, Ultra-Narrow-groove laser welding for heavy sections in ITER. Welding Journal 95(8) (2016) 300S-308S.
Google Scholar
[55]
T. Jokinen, V. Kujanpää, High power Nd:YAG laser welding in manufacturing of vacuum vessel of fusion reactor, Fusion Eng. Des. 69(1-4) (2003) 349-353.
DOI: 10.1016/s0920-3796(03)00071-1
Google Scholar
[56]
J. Näsström, J. Frostevarg, T. Silver, Hot-wire laser welding of deep and wide gaps, Phys. Procedia 78 (2015) 247-254. https://doi.org/10.1016/j.phpro.2015.11.035.
DOI: 10.1016/j.phpro.2015.11.035
Google Scholar