Research of Technology for Repair of Heat Exchangers of Nuclear Power Plants by Laser Welding

Article Preview

Abstract:

Extending the lifetime of energy facilities is extremely important today. This is especially true of nuclear power plants, the closure (or modernization) of which poses enormous financial and environmental problems. High-quality repair of reactors can significantly extend their service life. One of the critical parts is heat exchangers, the tubes of which quite often fail. Sealing, as a type of repair of heat exchanger tubes by the plugs, is promising provided that the joint quality is high. Practical experience in the use of welding to solve this problem has shown the need to search technological solutions associated with increasing the depth of penetration and reducing the area of thermal effect. The aim of the work was to develop a highly efficient technology for repair and extension of service life of heat exchangers of nuclear power plants based on the results of studying the technological features of laser welding of joints of dissimilar austenitic steels AISI 321 and AISI 316Ti in the vertical spatial position. Based on the results of the analysis of mechanical test data, visual and radiographic control, impermeability tests and metallographic studies of welded joints, the appropriate modes of laser welding of plugs have been determined. The principal causes of defects during laser welding of annular welded joints of dissimilar stainless steels are determined and techniques for their elimination and prevention of their formation are proposed. Based on the results of the research, technological recommendations for laser welding of plugs in the heat exchange tube of the collector are formulated, which significantly improves the technology of repair of steam generators of nuclear power plants and extends the service life of reactors.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 313)

Pages:

94-105

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Ge, J. Zhang, Modeling of main steam and two-phase heat exchanger for nuclear power unit, 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, Wuhan, (2011) 337-340. https://doi.org/10.1109/CCIENG.2011.6008027.

DOI: 10.1109/ccieng.2011.6008027

Google Scholar

[2] State enterprise National atomic energy generating company "Energoatom", Strategic development plan of the state enterprise "National atomic energy generating company "Energoatom" for 2018-2022, State enterprise "National atomic energy generating company "Energoatom, (2018). [Online]. Available: http://www.energoatom.com.ua/files/file/ strateg_chniy_plan_2018_2022_04042018.pdf. [Accessed: Nov. 19, 2019]. [in Ukrainian].

DOI: 10.15276/opu.1.57.2019.09

Google Scholar

[3] H. Bastida, C.E. Ugalde-Loo, M. Abeysekera, X. Xu, M. Qadrdan, Dynamic modelling and control of counter-flow heat exchangers for heating and cooling systems, 2019 54th International Universities Power Engineering Conference (UPEC), Bucharest, Romania (2019) 1-6.

DOI: 10.1109/upec.2019.8893634

Google Scholar

[4] J. Xu, R.Z. Wang, Y. Li, A review of available technologies for seasonal thermal energy storage, Solar Energy 103 (2014) 610-638. https://doi.org/10.1016/j.solener.2013.06.006.

DOI: 10.1016/j.solener.2013.06.006

Google Scholar

[5] S. Plankovskyy, Y. Tsegelnyk, O. Shypul, A. Pankratov, T. Romanova, Cutting irregular objects from the rectangular metal sheet, In: M. Nechyporuk, V. Pavlikov, D. Kritskiy (Eds.), Integrated Computer Technologies in Mechanical Engeneering, Advances in Intelligent Systems and Computing 113 (2020) 150-157. https://doi.org/10.1007/978-3-030-37618-5_14.

DOI: 10.1007/978-3-030-37618-5_14

Google Scholar

[6] T. Baumann, S. Zunft, R. Tamme, Moving bed heat exchangers for use with heat storage in concentrating solar plants: a multiphase model, Heat Transfer Eng. 35 (2013) 224-231.

DOI: 10.1080/01457632.2013.825154

Google Scholar

[7] V.D. Shelyagin, A.V. Bernatskyi, O.M. Berdnikova, V.M. Sydorets, O.V. Siora, S.G. Gryhorenko, Effect of technological features of laser welding of titanium-aluminium structures on the microstructure formation of welded joints, Metallofiz. Noveishie Tekhnol. 42(3) (2020) 363-379 [in Ukrainian]. https://doi.org/10.15407/mfint.42.03.0363.

DOI: 10.15407/mfint.42.03.0363

Google Scholar

[8] O.H. Strelko, H.I. Kyrychenko, Y.A. Berdnychenko, O.L. Sorochynska, O.Y. Pylypchuk, Application of information technologies for automation of railway and cargo owner interaction, IOP Conf. Ser. Mater. Sci. Eng. 582(1) (2019) 012029. https://doi.org/10.1088/1757-899X/582/1/012029.

DOI: 10.1088/1757-899x/582/1/012029

Google Scholar

[9] D.A. Chinakhov, E.G. Grigorieva, E.I. Mayorova, Study of gasdynamic effect upon the weld geometry when consumable electrode welding, IOP Conf. Ser. Mater. Sci. Eng. 127 (2016) 012013. https://doi.org/10.1088/1757-899x/127/1/012013.

DOI: 10.1088/1757-899x/127/1/012013

Google Scholar

[10] F. Middleton, An all metal UHV flange seal for dissimilar materials, IEEE Trans. Nucl. Sci. 28(3) (1981) 3298-3299. https://doi.org/10.1109/TNS.1981.4332084.

DOI: 10.1109/tns.1981.4332084

Google Scholar

[11] Q. Yin, Y. Li, Straight wave UT technical for dissimilar metal weld of nozzle to safe-end in reactor pressure vessel, 2014 IEEE Far East Forum on Nondestructive Evaluation/Testing, Chengdu (2014) 122-127. https://doi.org/10.1109/FENDT.2014. 6928246.

DOI: 10.1109/fendt.2014.6928246

Google Scholar

[12] H. Chen, Z. Yu, W. Wang, G. Ma, M. Hong, Research on ultrasonic inspection of control rod drive mechanism housing weld in Chinese Evolutionary Pressurized Reactor nuclear power plant, 2014 IEEE Far East Forum on Nondestructive Evaluation/Testing, Chengdu (2014) 128-134.

DOI: 10.1109/fendt.2014.6928247

Google Scholar

[13] L.V. Petrushynets, I.V. Falchenko, A.I. Ustinov, O.O. Novomlynets, S.M. Yushchenko, Vacuum diffusion welding of intermetallic alloy ɣ-TiAl with high-temperature alloy EI437B through nanolayered interlayers through nanolayered interlayers, 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine (2019) 542-546. https://doi.org/10.1109/UKRCON.2019.8879918.

DOI: 10.1109/ukrcon.2019.8879918

Google Scholar

[14] J. Thamprajamjit, P. Surin, Dissimilar metal joining between stainless steel SUS304 and carbon steel SS400 using plasma arc welding process, 2018 2nd International Conference on Engineering Innovation (ICEI), Bangkok (2018) 42-45. https://doi.org/10.1109/ ICEI18.2018.8448663.

DOI: 10.1109/icei18.2018.8448663

Google Scholar

[15] M. Cavallini, P. Veronesi, L. Lusvarghi, E. Colombini, R. Giovanardi, L. Rigon, Optimization of laser welding of dissimilar corrosion resistant alloys, 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena (2017) 1-5.

DOI: 10.1109/rtsi.2017.8065935

Google Scholar

[16] L.I., Markashova, V.V. Arsenyuk, G.M. Grigorenko, E.N. Berdnikova, Special features of the mass transfer processes upon pressure welding the dissimilar metals. Svarochnoe Proizvodstvo 4 (2004) 28-35.

DOI: 10.1533/wint.2004.3357

Google Scholar

[17] Y. Fang, X. Jiang, D. Mo, D. Zhu, Z. Luo, A review on dissimilar metals' welding methods and mechanisms with interlayer, Int. J. Adv. Manuf. Technol. 102(9-12) (2019) 2845-2863.

DOI: 10.1007/s00170-019-03353-6

Google Scholar

[18] T.E. Abioye, T.O. Olugbade, T.I. Ogedengbe, Welding of dissimilar metals using gas metal arc and laser welding techniques: a review, Journal of Emerging Trends in Engineering and Applied Sciences, 8(6) (2017) 225-228.

Google Scholar

[19] L.I. Markashova, V.V. Arsenyuk, E.N. Berdnikova, I.L. Bogajchuk, Peculiarities of vapor formation under the condition of pressure welding of dissimilar materials at high deformation rates, Metallofiz. Noveishie Tekhnol. 23(10) (2001) 1403-1417 [in Russian].

Google Scholar

[20] O.V. Siora, A.V. Bernatskyi, Development of basic processing methods of laser welding of joints of dissimilar metals, Metallofiz. Noveishie Tekhnol. 33(569) (2011). [in Russian].

Google Scholar

[21] K. Martinsen, S.J. Hu, B.E. Carlson, Joining of dissimilar materials, CIRP Annals 64(2) (2015) 679-699. https://doi.org/10.1016/j.cirp.2015.05.006.

DOI: 10.1016/j.cirp.2015.05.006

Google Scholar

[22] PGV-1000M steam generator. Description and main features, desnogorskspektr. [Online]. Available: http://desnogorskspektr.ru/aes/teoriya-aes/parogenerator-pgv-1000m.-description-and-basic-characteristics.html. [Accessed: Nov. 19, 2019]. [in Russian].

Google Scholar

[23] O.P. Shugaylo, Stress-strain state of tubular elements of steam generators in emergency situations, Ph.D. dissertation, NAS of Ukraine, S.P. Tymoshenko Institute of Mechanics. Kyiv, (2019). [in Ukrainian].

Google Scholar

[24] IAEA-TECDOC-1577. Strategy for assessment of WWER steam generator tube integrity, Vienna: IAEA, (2007).

Google Scholar

[25] T.Kh. Margulova, Nuclear power plants. Moscow: Higher School, 1984. [in Russian].

Google Scholar

[26] M.M. Zarazovskii, Borodii, V. Kozlov, Risk-informed approach to structure integrity prediction and optimization of in-service inspection of heat exchange equipment with high defect statistics, Nuclear and Radiation Safety 4 (2016) 32-38. [in Russian].

DOI: 10.32918/nrs.2016.4(72).05

Google Scholar

[27] V.V. Müller, V.N. Mitroshin, Automatic system of shape weld stabilization with manual and mechanized argon-arc welding by non-consumable electrode, 2018 International Russian Automation Conference (RusAutoCon), Sochi (2018) 1-5.

DOI: 10.1109/rusautocon.2018.8501708

Google Scholar

[28] M. Bodeau, Mitigating potential hazards of TIG welding on spacecraft, IEEE Trans. Electromagn. Compat. 61(1) (2019) 90-99. https://doi.org/10.1109/TEMC.2018.2813331.

DOI: 10.1109/temc.2018.2813331

Google Scholar

[29] A.R. Kohandehghan, S. Serajzadeh, A.H. Kokabi, A study on residual stresses in gas tungsten arc welding of AA5251, Mater. Manuf. Process. 25 (2010) 1242-1250.

DOI: 10.1080/10426914.2010.481004

Google Scholar

[30] D.P. Il'yaschenko, D.A. Chinakhov, R.A. Mamadaliev, Effect of inverter power source characteristics on welding stability and heat affected zone dimensions, IOP Conf. Ser.: Earth Environ. Sci. 115 (2018) 012041. https://doi.org/10.1088/1755-1315/115/1/012041.

DOI: 10.1088/1755-1315/115/1/012041

Google Scholar

[31] A.D. Razmyshlyaev, M.V. Mironova, A.A. Deli, Speed of metal flows in the pool in arc surfacing in a longitudinal magnetic field, Weld. Int. 24(8) (2010) 627-630. https://doi.org/10.1080/09507111003655531.

DOI: 10.1080/09507111003655531

Google Scholar

[32] D.P. Il'Yaschenko, D.A. Chinakhov, Y.M. Gotovschik, Investigating the influence of the power supply type upon the properties of the weld joints under manual arc welding, Adv. Mater. Res. 1040 (2014) 837-844. https://doi.org/10.4028/www.scientific.net/AMR.1040.837.

DOI: 10.4028/www.scientific.net/amr.1040.837

Google Scholar

[33] S.V. Akhonin, R.N. Mishchenko, I.K. Petrichenko, Investigation of the weldability of titanium alloys produced by different methods of melting, Mater. Sci. 42 (2006) 323-329. https://doi.org/10.1007/s11003-006-0086-5.

DOI: 10.1007/s11003-006-0086-5

Google Scholar

[34] A.D. Razmyshlyayev, M.V. Mironova, S.V. Yarmonov, P.A. Vydmysh, The speed of flows in the pool in arc welding in a transverse magnetic field, Weld. Int. 29(4) (2015) 296-300. https://doi.org/10.1080/09507116.2014.921376.

DOI: 10.1080/09507116.2014.921376

Google Scholar

[35] D.A. Chinakhov, E.G. Grigorieva, E.I. Mayorova, D.S. Kartsev, The influence of shielding gas flow rate on the transfer frequency of electrode metals drops. IOP Conf. Series: Materials Science and Engineering 142 (2016) 012005 https://doi.org/10.1088/1757-899X/142/1/012005.

DOI: 10.1088/1757-899x/142/1/012005

Google Scholar

[36] A.F. Vlasov, N.A. Makarenko, A.M. Kushchiy, Using exothermic mixtures in manual arc welding and electroslag processes, Weld. Int. 31(7) (2017) 565-570. https://doi.org/10.1080/09507116.2017.1295561.

DOI: 10.1080/09507116.2017.1295561

Google Scholar

[37] A.D. Razmyshlyaev, M.V. Ahieieva, Features of arc surfacing process in a longitudinal magnetic field, Appl. Mech. Mater. 682 (2014) 313-318. https://doi.org/10.4028/www.scientific.net/AMM.682.313.

DOI: 10.4028/www.scientific.net/amm.682.313

Google Scholar

[38] L. Markashova, O. Berdnikova, A. Bernatskyi, M. Iurzhenko, V. Sydorets, Physical and mechanical properties of high-strength steel joints produced by laser welding, 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF), Lviv (2017) 88-91. https://doi.org/10.1109/YSF.2017.8126596.

DOI: 10.1109/ysf.2017.8126596

Google Scholar

[39] S. Katayama, Handbook of laser welding technologies. Cambridge, Woodhead Publishing Ltd., (2013).

Google Scholar

[40] A. Kurc-Lisiecka, A. Lisiecki, Laser welding of the new grade of advanced high-strength steel DOMEX 960, Materiali in tehnologije / Materials and technology 51(7) (2017) 199-204.

DOI: 10.17222/mit.2015.158

Google Scholar

[41] J. Viňáš, M. Ábel, Analysis of laser welds on automotive steel sheets, Mater. Sci. Forum 818 (2015) 239-242. https://doi.org/10.4028/www.scientific.net/MSF.818.239.

DOI: 10.4028/www.scientific.net/msf.818.239

Google Scholar

[42] V. Shelyagin, V. Khaskin, A. Bernatskyi, A. Siora, V. Sydorets, D. Chinakhov, Multi-pass laser and hybrid laser-arc narrow-gap welding of steel butt joints, Mater. Sci. Forum 927 (2018) 64-71. https://doi.org/10.4028/www.scientific.net/MSF.927.64.

DOI: 10.4028/www.scientific.net/msf.927.64

Google Scholar

[43] A. Bernatskyi, V. Sydorets, O. Berdnikova, I. Krivtsun, D. Chinakhov, Pore formation during laser welding in different spatial positions, Solid State Phenom. 303 (2020) 47-58. https://doi.org/10.4028/www.scientific.net/SSP.303.47.

DOI: 10.4028/www.scientific.net/ssp.303.47

Google Scholar

[44] A. Kovács, Integrated task sequencing and path planning for robotic remote laser welding, Int. J. Prod. Res. 54(4) (2016) 1210-1224. https://doi.org/10.1080/00207543.2015.1057626.

DOI: 10.1080/00207543.2015.1057626

Google Scholar

[45] J. Adamiec, R. Kocurek, Effect of autogenous laser weld on microstructure and mechanical properties of Inconel 617 nickel alloy, Solid State Phenom. 226 (2015) 43-46.

DOI: 10.4028/www.scientific.net/ssp.226.43

Google Scholar

[46] Technologies for non-destructive testing and repair of NPP components NUSIM 2008 VUJE https://inis.iaea.org/collection/ NCLCollectionStore/_Public/43/124/ 43124116.pdf.

Google Scholar

[47] L. Markashova, O. Berdnikova, A. Bernatskyi, V. Sydorets and O. Bushma, Crack resistance of 14KhGN2MDAFB high-strength steel joints manufactured by laser welding, IOP Conf. Ser. Earth Environ. Sci. 224(1) (2019) 012013. https://doi.org/10.1088/1755-1315/224/1/012013.

DOI: 10.1088/1755-1315/224/1/012013

Google Scholar

[48] G. Turichin, M. Kuznetsov, A. Pozdnyakov, S. Gook, A. Gumenyuk, M. Rethmeier, Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel, Procedia CIRP 74 (2018) 748-751. https://doi.org/10.1016/j.procir.2018.08.018.

DOI: 10.1016/j.procir.2018.08.018

Google Scholar

[49] K.T. Lee, C.S. Park, H.Y. Kim, Fatigue and buckling analysis of automotive components considering forming and welding effects, Int. J. Automot. Technol. 18(1) (2017) 97-102.

DOI: 10.1007/s12239-017-0010-z

Google Scholar

[50] T. Slezak, L. Sniezek, Fatigue life of welded joints of high-strength structural steel S960QL, Solid State Phenom. 250 (2016) 169-174. https://doi.org/10.4028/www.scientific.net/SSP.250.169.

DOI: 10.4028/www.scientific.net/ssp.250.169

Google Scholar

[51] H. Vemanaboina, S. Akella, R.K. Buddu, E. Gundabattini, Distortion validation of laser beam welded SS316LN steel plates, 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain (2019) 1-5. https://doi.org/10.1109/ICMSAO.2019.8880444.

DOI: 10.1109/icmsao.2019.8880444

Google Scholar

[52] H. Murakawa, Residual stress and distortion in laser welding, in: Handbook of Laser Welding Technologies, Cambridge, Woodhead Publishing Ltd., 2013, pp.374-400.

DOI: 10.1533/9780857098771.2.374

Google Scholar

[53] I. Bunaziv, C. Dorum, X. Ren, M. Eriksson, O. Akselsen, Application of LBW and LAHW for fillet welds of 12 and 15 mm structural steel, Procedia Manufact. 36 (2019) 121-130. https://doi.org/10.1016/j.promfg.2019.08.017.

DOI: 10.1016/j.promfg.2019.08.017

Google Scholar

[54] S.K. Wu, J.L. Zou, R.S. Xiao, G.W. Zhang, Ultra-Narrow-groove laser welding for heavy sections in ITER. Welding Journal 95(8) (2016) 300S-308S.

Google Scholar

[55] T. Jokinen, V. Kujanpää, High power Nd:YAG laser welding in manufacturing of vacuum vessel of fusion reactor, Fusion Eng. Des. 69(1-4) (2003) 349-353.

DOI: 10.1016/s0920-3796(03)00071-1

Google Scholar

[56] J. Näsström, J. Frostevarg, T. Silver, Hot-wire laser welding of deep and wide gaps, Phys. Procedia 78 (2015) 247-254. https://doi.org/10.1016/j.phpro.2015.11.035.

DOI: 10.1016/j.phpro.2015.11.035

Google Scholar