Influence of Preliminary Heat Treatment and Ball Milling of Aluminum Powder on Cold Spray Process

Article Preview

Abstract:

This paper presents the results of a study of the effect of preliminary heat treatment and ball milling of aluminum powder on the cold spraying process and the properties of the obtained coatings (porosity and microhardness). The ball milling of aluminum powder leads to an increase in specific surface area, a decrease in apparent density and a decrease in the value of the crystallite size, which indicates a decrease in grain size. It is shown that coatings deposited from ball milled powders have slightly higher coatings hardness averagely. The profilometry of aluminum coatings obtained under the same conditions from the initial and processed powders did not reveal significant changes in the form of coatings and their typical dimensions (width, thickness), which indicates the absence of significant changes in the deposition coefficient of the initial and processed aluminum powders. Ball milled powders on average correspond to slightly higher hardnesses of coatings.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 313)

Pages:

127-135

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V. Fomin, Cold Spray Technology, Elsevier Science, Amsterdam, (2007).

DOI: 10.1016/b978-008045155-8/50003-x

Google Scholar

[2] V.F. Kosarev, S.V. Klinkov, A.N. Papyrin, Supersonic jet/substrate interaction in the cold spray process, in: V.K. Champangne (Ed.), The Cold Spray materials deposition process. Fundamentals and applications, Woodhead Publishing Ltd, Cambridge, England, 2007, p.178–216.

DOI: 10.1533/9781845693787.2.178

Google Scholar

[3] R. Maev, V. Leshchynsky, Introduction to Low Pressure Gas Dynamic Spray: Physics & Technology, Wiley-VCH, Weinheim, (2008).

DOI: 10.1002/9783527621903

Google Scholar

[4] D.Y. Kim, J.J. Park, J.G. Lee, D. Kim, S.J. Tark, S. Ahn, J.H. Yun, J. Gwak, K.H. Yoon, S. Chandra, S.S. Yoon, Cold spray deposition of copper electrodes on silicon and glass substrates, J. Therm. Spray Technol. 22 (2013) 1092–1102.

DOI: 10.1007/s11666-013-9953-4

Google Scholar

[5] F. Robitaille, M. Yandouzi, S. Hind, B. Jodoin, Metallic coating of aerospace carbon/epoxy composites by the pulsed gas dynamic spraying process, Surf. Coat. Technol. 203 (2009) 2954–2960.

DOI: 10.1016/j.surfcoat.2009.03.011

Google Scholar

[6] X.I. Zhou, A.F. Chen, J.C. Liu, X.K. Wu, J.S. Zhang, Preparation of metallic coatings on polymer matrix composites by cold spray, Surf. Coat. Technol. 206 (2011) 132–136.

DOI: 10.1016/j.surfcoat.2011.07.005

Google Scholar

[7] R. Lupoi, W. O'Neill, Powder stream characteristics in cold spray nozzles, Surf. Coat. Technol. 206 (2011) 1069–1076.

DOI: 10.1016/j.surfcoat.2011.07.061

Google Scholar

[8] M. Gardon, A. Latorre, M. Torrell, S. Dosta, J. Fernandez, J.M. Guilemany, Cold gas spray titanium coatings onto a biocompatible polymer, Mater. Lett. 106 (2013) 97–99.

DOI: 10.1016/j.matlet.2013.04.115

Google Scholar

[9] A.S. Alhulaifi, G.A. Buck, W.J. Arbegast, Numerical and experimental investigation of cold spray gas dynamic effects for polymer coating, J. Therm. Spray Technol. 21 (2012) 852–862.

DOI: 10.1007/s11666-012-9743-4

Google Scholar

[10] Y. Xu, I.M. Hutchings, Cold spray deposition of thermoplastic powder, Surf. Coat. Technol. 201 (2006) 3044–3050.

DOI: 10.1016/j.surfcoat.2006.06.016

Google Scholar

[11] F. Cao, H. Park, J. Heo, J. Kwon, C. Lee, Effect of process gas flow on the coating microstructure and mechanical properties of vacuum kinetic-sprayed TiN layers, J. Therm. Spray Technol. 22 (2013) 1109–1119.

DOI: 10.1007/s11666-013-9963-2

Google Scholar

[12] A. Sova, S. Klinkov, V. Kosarev, N. Ryashin, I. Smurov, Preliminary study on deposition of aluminium and copper powders by cold spray micronozzle using helium, Surf. Coat. Technol. 220 (2013) 98–101.

DOI: 10.1016/j.surfcoat.2012.09.036

Google Scholar

[13] A. Sova, A. Okunkova, S. Grigoriev, I. Smurov, Velocity of the particles accelerated by a cold spray micronozzle: experimental measurments and numerical simulation, J. Therm. Spray Technol. 22 (2013) 75–80.

DOI: 10.1007/s11666-012-9846-y

Google Scholar

[14] A. Sova, I. Smurov, M. Doubenskaia, P. Petrovskiy, Deposition of aluminum powder by cold spray micronozzle, J. Therm. Spray Technol. 95 (2018) 3745–3752.

DOI: 10.1007/s00170-017-1443-2

Google Scholar

[15] W. Song, K. Jung, D.-M. Chun, S.-H. Ahn, C.S. Lee, Deposition of Al2O3 powders using nano-particle deposition system, Surf. Rev. Lett. 17 (2010).

DOI: 10.1142/s0218625x10013710

Google Scholar

[16] V.K. Champagne, The repair of magnesium rotorcraft components by cold spray, JFAP 8 (2008) 164-175.

Google Scholar

[17] H.J. Choi, M. Lee, J. Y. Lee Application of a cold spray technique to the fabrication of a copper canister for the geological disposal of CANDU spent fuels, Nucl. Eng. Des. 240 10 (2010) 2714-2720.

DOI: 10.1016/j.nucengdes.2010.06.038

Google Scholar

[18] S. Grigoriev, A. Okunkova, A. Sova, P. Bertrand, I. Smurov, Cold spraying: from process fundamentals towards advanced applications, Surf. Coat. Technol. 268 (2015) 77–84.

DOI: 10.1016/j.surfcoat.2014.09.060

Google Scholar

[19] S.M. Hassani-Gangaraj, A. Moridi, M. Guagliano, Critical review of corrosion protection by cold spray coatings, Surf. Eng. 31 (2015) 803–815.

DOI: 10.1179/1743294415y.0000000018

Google Scholar

[20] C.A. Widener, M.J. Carter, O.C. Ozdemir R.H. Hrabe, B. Hoiland, T.E. Stamey, V.K. Champagne, T.J. Eden, Application of high-pressure cold spray for an internal bore repair of a navy valve actuator, J. Therm. Spray Technol. 25 (2016) 193–201.

DOI: 10.1007/s11666-015-0366-4

Google Scholar

[21] S. Yina, P. Cavaliereb, B. Aldwella, R. Jenkinsa, H. Liaoc, W. Lid, R. Lupoia, Cold spray additive manufacturing and repair: Fundamentals and applications, Additive Manufacturing 21 (2018) 628–650.

DOI: 10.1016/j.addma.2018.04.017

Google Scholar

[22] J. Liu, H. Cui, X. Zhou, X. Wu and J. Zhang, Materials for electrochemical capacitors, J. Met Mater Int. 18 (2012) 121-128.

Google Scholar

[23] Y.Y. Zhang, X.K. Wu, H. Cui, J.S. Zhang, Cold-spray processing of a high density nanocrystalline aluminum alloy 2009 coating using a mixture of as-atomized and as-cryomilled powders, J. Therm. Spray Technol. 20 (2011) 1125-1132.

DOI: 10.1007/s11666-011-9652-y

Google Scholar

[24] M. Kumar, H. Singh and N. Singh, Development of nano-crystalline cold sprayed Ni–20Cr coatings for high temperature oxidation resistance, Surf. Coat. Tech. 266 (2015) 122-133.

DOI: 10.1016/j.surfcoat.2015.02.032

Google Scholar

[25] J. Liu, X. Zhou, X. Zheng, H. Cui and J. Zhang, Tribological behavior of cold-sprayed nanocrystalline and conventional copper coatings Appl. Surf. Sci. 258 (2012) 7490-7496.

DOI: 10.1016/j.apsusc.2012.04.070

Google Scholar

[26] R. Ghelichi, S. Bagherifard and D. Mac Donald, Fatigue strength of Al alloy cold sprayed with nanocrystalline powders, Int. J. Fatigue 65 (2014) 51-57.

DOI: 10.1016/j.ijfatigue.2013.09.001

Google Scholar

[27] W. A. Story, L. N. Brewer, Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition, Metall. Mater. Trans. A 49 (2017) 446-449.

DOI: 10.1007/s11661-017-4428-8

Google Scholar

[28] S. Yin, C. Chen, X. Suo and R. Lupoi, Cold-Sprayed Metal Coatings with Nanostructure, Adv. Mater. Sci. Eng. (2018) Article ID 2804576.

Google Scholar

[29] S.Yin, X. Wang and X. Suo, Deposition behavior of thermally softened copper particles in cold spraying, Acta. Mater. 61 (2013) 5105-5118.

DOI: 10.1016/j.actamat.2013.04.041

Google Scholar

[30] A. E. Chesnokov, A.V. Smirnov and T. M. Vidyuk, Influence of surface active agent on the size of metal powder particles during their ball milling in a planetary mill, J. Phys. Conf. Ser. 1404 (2019) 012012.

DOI: 10.1088/1742-6596/1404/1/012011

Google Scholar

[31] T. M. Vidyuk, A. E. Chesnokov, A.V. Smirnov and V S Shikalov, The effect of ball milling in a planetary mill on aluminium particles microstructure and properties of cold sprayed coatings, J. Phys. Conf. Ser. 1404 (2019) 012049.

DOI: 10.1088/1742-6596/1404/1/012049

Google Scholar