Selective Laser Melting AlSi12 Alloy by Utilizing of Non-Spherical Air-Atomized Powder

Article Preview

Abstract:

AlSi12 alloy is one of the most widely used materials in selective laser melting. Selective laser melting (SLM) of AlSi12 alloy has been well studied in recent years. Researchers typically use very expensive spherical powders atomized in an inert atmosphere. For this paper, we studied SLM of air-atomized non-spherical powder to determine its printability. Nine specimens were fabricated using different SLM process parameters. The lowest porosity that was achieved was 1.3%.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

558-563

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu, Y. Shi, Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review, Front. Mech. Eng. 10 (2015) 111–125.

DOI: 10.1007/s11465-015-0341-2

Google Scholar

[2] H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin, E. Toyserkani, A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties, Mater. Des. 144 (2018) 98–128.

DOI: 10.1016/j.matdes.2018.02.018

Google Scholar

[3] H. Lee, C.H.J. Lim, M.J. Low, N. Tham, V.M. Murukeshan, Y.-J. Kim, Lasers in additive manufacturing: A review, Int. J. Precis. Eng. Manuf. - Green Technol. 4 (2017) 307–322.

DOI: 10.1007/s40684-017-0037-7

Google Scholar

[4] P. Szymczyk, G. Ziółkowski, A. Junka, E. Chlebus, Application of Ti6Al7Nb alloy for the manufacture of biomechanical functional structures (BFS) for custom-made bone implants, Materials (Basel). 11 (2018).

DOI: 10.3390/ma11060971

Google Scholar

[5] R.M. Baitimerov, P.A. Lykov, L.V. Radionova, E.V. Safonov, Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).

DOI: 10.1088/1757-899x/248/1/012012

Google Scholar

[6] D. Wang, S. Wu, Y. Yang, W. Dou, S. Deng, Z. Wang, S. Li, The effect of a scanning strategy on the residual stress of 316L steel parts fabricated by selective laser melting (SLM), Materials (Basel). 11 (2018).

DOI: 10.3390/ma11101821

Google Scholar

[7] C. Haase, J. Bültmann, J. Hof, S. Ziegler, S. Bremen, C. Hinke, A. Schwedt, U. Prahl, W. Bleck, Exploiting process-related advantages of selective laser melting for the production of high-manganese steel, Materials (Basel). 10 (2017).

DOI: 10.3390/ma10010056

Google Scholar

[8] P.A. Lykov, R.M. Baitimerov, S.D. Vaulin, Influence of SLM Process Parameters on Porosity of Nickel Base Heat Resistance Alloy EP648, Mater. Sci. Forum. 843 (2016) 253–258.

DOI: 10.4028/www.scientific.net/msf.843.253

Google Scholar

[9] Q. Jia, D. Gu, Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms, Opt. Laser Technol. 62 (2014) 161–171.

DOI: 10.1016/j.optlastec.2014.03.008

Google Scholar

[10] X. Han, T. Sawada, C. Schille, E. Schweizer, L. Scheideler, J. Geis-Gerstorfer, F. Rupp, S. Spintzyk, Comparative analysis of mechanical properties and metal-ceramic bond strength of Co-Cr dental alloy fabricated by different manufacturing processes, Materials (Basel). 11 (2018).

DOI: 10.3390/ma11101801

Google Scholar

[11] Z. Guoqing, Y. Yongqiang, L. Hui, S. Changhui, Z. Zimian, Study on the Quality and Performance of CoCrMo Alloy Parts Manufactured by Selective Laser Melting, J. Mater. Eng. Perform. 26 (2017) 2869–2877.

DOI: 10.1007/s11665-017-2716-5

Google Scholar

[12] H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Manufacture by selective laser melting and mechanical behavior of commercially pure titanium, Mater. Sci. Eng. A. 593 (2014) 170–177.

DOI: 10.1016/j.msea.2013.11.038

Google Scholar

[13] P. Lykov, R. Baytimerov, S. Vaulin, E. Safonov, D. Zherebtsov, Selective Laser Melting of Copper by 200 W CO2 Laser, SAE Tech. Pap. 2016-April (2016).

DOI: 10.4271/2016-01-0333

Google Scholar

[14] J. Li, Z. Zhao, P. Bai, H. Qu, M. Liang, H. Liao, L. Wu, P. Huo, Tribological behavior of TiC particles reinforced 316Lss composite fabricated using selective laser melting, Materials (Basel). 16 (2019).

DOI: 10.3390/ma12060950

Google Scholar

[15] P.A. Lykov, S.B. Sapozhnikov, R.M. Baitimerov, The manufacturing of the AlSi12-Al2O3 composite powder for additive production methods, (2016).

DOI: 10.4028/www.scientific.net/msf.870.314

Google Scholar

[16] F. Chang, D. Gu, D. Dai, P. Yuan, Selective laser melting of in-situ Al4SiC4 + SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size, Surf. Coatings Technol. 272 (2015) 15–24.

DOI: 10.1016/j.surfcoat.2015.04.029

Google Scholar

[17] K.G. Prashanth, R. Damodaram, S. Scudino, Z. Wang, K. Prasad Rao, J. Eckert, Friction welding of Al-12Si parts produced by selective laser melting, Mater. Des. 57 (2014) 632–637.

DOI: 10.1016/j.matdes.2014.01.026

Google Scholar

[18] H. Gu, H. Gong, J.J.S. Dilip, D. Pal, A. Hicks, H. Doak, B. Stucker, Effects of Powder Variation on the Microstructure and Tensile Strength of Ti6Al4V Parts Fabricated by Selective Laser Melting, Proc. 25th Solid Free. Fabr. Symp. Present. Int. Solid Free. Fabr. Symp. Austin, Texas, USA. (2014) 470–483.

Google Scholar

[19] A.B. Spierings, N. Herres, G. Levy, Influence of the particle size distribution on surface quality and mechanical properties in additive manufactured stainless steel parts, Proc. 21st Solid Free. Fabr. Symp. Present. Int. Solid Free. Fabr. Symp. Austin, Texas, USA. (2010) 397–406.

DOI: 10.1108/13552541111124770

Google Scholar

[20] R. Engeli, T. Etter, S. Hövel, K. Wegener, Processability of different IN738LC powder batches by selective laser melting, J. Mater. Process. Technol. 229 (2016) 484–491.

DOI: 10.1016/j.jmatprotec.2015.09.046

Google Scholar

[21] P.A. Lykov, E. V Safonov, A.O. Shul'ts, Powder particle formation mechanism with dispersion of different molten metals, Metallurgist. 57 (2013) 232–236.

DOI: 10.1007/s11015-013-9717-x

Google Scholar

[22] A.B. Spierings, M. Voegtlin, K. Wegener, T. Bauer, Powder flowability characterisation methodology for powder-bed- based metal additive manufacturing, Prog. Addit. Manuf. (2015).

DOI: 10.1007/s40964-015-0001-4

Google Scholar

[23] X.P. Li, K.M. O'Donnell, T.B. Sercombe, Selective laser melting of Al-12Si alloy: Enhanced densification via powder drying, Addit. Manuf. 10 (2016) 10–14.

DOI: 10.1016/j.addma.2016.01.003

Google Scholar

[24] D. Gu, Y. Shen, Balling phenomena during direct laser sintering of multi-component Cu-based metal powder, J. Alloys Compd. 432 (2007) 163–166.

DOI: 10.1016/j.jallcom.2006.06.011

Google Scholar

[25] K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, J. Eckert, Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment, Mater. Sci. Eng. A. 590 (2014) 153–160.

DOI: 10.1016/j.msea.2013.10.023

Google Scholar

[26] K.G. Prashanth, J. Eckert, Formation of metastable cellular microstructures in selective laser melted alloys, J. Alloys Compd. 707 (2017) 27–34.

DOI: 10.1016/j.jallcom.2016.12.209

Google Scholar