Characteristics of Powders from Different Aluminum Alloys for Additive Technologies Obtained by Gas Atomization

Article Preview

Abstract:

Selective laser melting (SLM) is one of the additive manufacturing technologies that allows us to produce complex shape metallic objects from powder feedstock. Al-alloys are very promising materials in selective laser melting. In this paper, atomized metal powders of various aluminum alloys are investigated: 1) deformable alloys АК4, АК6; 2) cast alloys АК9ph, АК12; 3) deformable hardened alloy D16. As a part of the work, the particle shape, particle size distribution and technical characteristics of the powders were investigated, and also the compliance of materials with the requirements of additive technologies (SLM) was determined.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

564-569

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.M. Wagner, R.O. Walton. Additive manufacturing's impact and future in the aviation industry. Prod Plan Control. 27(13) (2016) 1124–1130: http://dx.doi.org/10.1080/09537287.2016.1199824.

DOI: 10.1080/09537287.2016.1199824

Google Scholar

[2] E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille. Additive Manufacturing of Titanium Alloy for Aircraft Components. Procedia CIRP. 35 (2015) 55–60.

DOI: 10.1016/j.procir.2015.08.061

Google Scholar

[3] B.K. Post, P.C. Chesser, R.F. Lind, A. Roschli, L.J. Love, K.T. Gaul, et al. Using Big Area Additive Manufacturing to directly manufacture a boat hull mould. Virtual Phys Prototyp 14(2) (2019) 123–129.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055059027&doi=10.1080%2F17452759.2018.1532798&partnerID=40&md5=d61c0b56637e268d40cfbbbe4a581e31.

DOI: 10.1080/17452759.2018.1532798

Google Scholar

[4] P.A. Lykov, R.M. Baitimerov, A.V. Panfilov, A.O. Guz. The manufacturing of TiAl6V4 implants using selective laser melting technology. In: IOP Conference Series: Materials Science and Engineering. (2017).

DOI: 10.1088/1757-899x/248/1/012004

Google Scholar

[5] H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, Hu M. A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting. PLoS One. 11(7) (2016).

DOI: 10.1371/journal.pone.0158513

Google Scholar

[6] R. Wauthle, J, van der Stok, S. Amin Yavari, J. Van Humbeeck, J-P. Kruth, A.A. Zadpoor, et al. Additively manufactured porous tantalum implants. Acta Biomater. 14 (2015) 217–225.

DOI: 10.1016/j.actbio.2014.12.003

Google Scholar

[7] J. Tian, W. Zhu, Q. Wei, S. Wen, S. Li, B. Song, et al. Process optimization, microstructures and mechanical properties of a Cu-based shape memory alloy fabricated by selective laser melting. J Alloys Compd. (2019) 754–764.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060520603&doi=10.1016%2Fj.jallcom.2019.01.153&partnerID=40&md5=b6cdfb2cebd4ab17457c6e9a5cdfac21.

DOI: 10.1016/j.jallcom.2019.01.153

Google Scholar

[8] J. Sun, Y. Yang, D. Wang. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method. Opt Laser Technol. 49 (2013) 118–124.

DOI: 10.1016/j.optlastec.2012.12.002

Google Scholar

[9] N. Contuzzi, S.L. Campanelli, C. Casavola, L. Lamberti. Manufacturing and characterization of 18Ni marage 300 lattice components by selective laser melting. Materials (Basel). 6(8) (2013) 3451–3468.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884397772&doi=10.3390%2Fma6083451&partnerID=40&md5=c541bd89e28138752428eac81d2bdef1.

DOI: 10.3390/ma6083451

Google Scholar

[10] Z. Zhao, L. Li, L. Tan, P. Bai, J. Li, L. Wu, et al. Simulation of stress field during the selective laser melting process of the nickel-based superalloy, GH4169. Materials (Basel). 11(9) (2018).: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052194181&doi=10.3390%2Fma11091525&partnerID=40&md5=f180f13197d7581db10137f4fcf99b83.

DOI: 10.3390/ma11091525

Google Scholar

[11] P. Krakhmalev, I. Yadroitsev. Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti–SiC powder mixtures. Intermetallics. 46 (2014) 147–155.

DOI: 10.1016/j.intermet.2013.11.012

Google Scholar

[12] L.P. Lam, D.Q. Zhang, Z.H. Liu, C.K. Chua. Phase analysis and microstructure characterisation of AlSi10Mg parts produced by Selective Laser Melting. Virtual Phys Prototyp. 10(4) (2015)207–215.: http://www.tandfonline.com/doi/full/10.1080/17452759.2015.1110868.

DOI: 10.1080/17452759.2015.1110868

Google Scholar

[13] M.V. Gerov, E.Y. Vladislavskaya, V.F. Terent'ev, D.V. Prosvirnin, O.S. Antonova, A.G. Kolmakov. Fatigue Strength of an AlSi10Mg Alloy Fabricated by Selective Laser Melting. Russ Metall. 2019(4) (2019) 392–397.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066930518&doi=10.1134%2FS0036029519040098&partnerID=40&md5=8e0c8e53151a7dcd659e24ee807699bf.

DOI: 10.1134/s0036029519040098

Google Scholar

[14] D. Gu, H. Wang, F. Chang, D. Dai, P. Yuan, Y.C. Hagedorn, et al. Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties. In: Physics Procedia. (2014) 108–116.

DOI: 10.1016/j.phpro.2014.08.153

Google Scholar

[15] N. Kang, P. Coddet, H. Liao, T. Baur, C. Coddet. Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting. Appl Surf Sci. 378 (2016) 142–149.

DOI: 10.1016/j.apsusc.2016.03.221

Google Scholar

[16] S. Scudino, C. Unterdörfer, K.G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel, et al. Additive manufacturing of Cu-10Sn bronze. Mater Lett. 156 (2015) 202–204.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930937755&doi=10.1016%2Fj.matlet.2015.05.076&partnerID=40&md5=ff83cab0fcb15923006726eff23bf2cb.

DOI: 10.1016/j.matlet.2015.05.076

Google Scholar

[17] K. Zhuravleva, M. Bönisch, K.G. Prashanth, U. Hempel, A. Helth, T. Gemming, et al. Production of Porous β-Type Ti-40Nb Alloy for Biomedical Applications: Comparison of Selective Laser Melting and Hot Pressing. Materials (Basel) [Internet]. 6(12) (2013) 5700–5712.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890280752&doi=10.3390%2Fma6125700&partnerID=40&md5=5f111514c0ac3f0d680f1cd149f2a9df.

DOI: 10.3390/ma6125700

Google Scholar

[18] H. Attar, L. Löber, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, et al. Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater Sci Eng A. 625 (2015) 350–356.

DOI: 10.1016/j.msea.2014.12.036

Google Scholar

[19] T.B. Sercombe, X. Li. Selective laser melting of aluminium and aluminium metal matrix composites: Review. Mater Technol. 31(2) (2016) 77–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963818873&doi=10.1179%2F1753555715Y.0000000078&partnerID=40&md5=e4832208e341b81a55c5a8fc95ba87f0.

DOI: 10.1179/1753555715y.0000000078

Google Scholar

[20] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, et al. Review of selective laser melting: Materials and applications. Vol. 2, Applied Physics Reviews. (2015).

DOI: 10.1063/1.4935926

Google Scholar

[21] S. Singh, V.S. Sharma, A. Sachdeva. Progress in selective laser sintering using metallic powders: a review. Mater Sci Technol. (2016) 1–13.: http://www.tandfonline.com/doi/full/10.1179/1743284715Y.0000000136.

Google Scholar

[22] T. Yang, T. Liu, W. Liao, E. MacDonald, H. Wei, X. Chen, et al. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting. J Mater Process Technol. 266 (2019) 26–36.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055855066&doi=10.1016%2Fj.jmatprotec.2018.10.015&partnerID=40&md5=e6bade6d0c065cb8f232ad65b26b1c0c.

DOI: 10.1016/j.jmatprotec.2018.10.015

Google Scholar

[23] T. Kimura, T. Nakamoto, T. Ozaki, K. Sugita, M. Mizuno, H. Araki. Microstructural formation and characterization mechanisms of selective laser melted Al–Si–Mg alloys with increasing magnesium content. Mater Sci Eng A. 754 (2019) 786–798.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062221473&doi=10.1016%2Fj.msea.2019.02.015&partnerID=40&md5=026a04bcef9170de42c6b1c41adaced6.

DOI: 10.1016/j.msea.2019.02.015

Google Scholar

[24] M. Wang, B. Song, Q. Wei, Y. Zhang, Y. Shi. Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy. Mater Sci Eng A. 739 (2019) 463–472.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055157698&doi=10.1016%2Fj.msea.2018.10.047&partnerID=40&md5=e4d70ce79562f5bdc4a6863a00d0affd.

DOI: 10.1016/j.msea.2018.10.047

Google Scholar

[25] L. Xi, P. Wang, K.G. Prashanth, H. Li, H.V. Prykhodko, S. Scudino, et al. Effect of TiB2 particles on microstructure and crystallographic texture of Al-12Si fabricated by selective laser melting. J Alloys Compd. 786 (2019) 551–556.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061043516&doi=10.1016%2Fj.jallcom.2019.01.327&partnerID=40&md5=52c1605cdbacd5ea4c22d52837568faa.

DOI: 10.1016/j.jallcom.2019.01.327

Google Scholar

[26] S. Pauly, P. Wang, U. Kühn, K. Kosiba. Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu. Addit Manuf. 22 (2018) 753–577.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049577818&doi=10.1016%2Fj.addma.2018.05.034&partnerID=40&md5=35971c2cec8cf26590335adf8bfcbc1e.

DOI: 10.1016/j.addma.2018.05.034

Google Scholar

[27] A.B. Anwar, Q-C. Pham. Study of the spatter distribution on the powder bed during selective laser melting. Addit Manuf. 22 (2018) 86–97.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046805443&doi=10.1016%2Fj.addma.2018.04.036&partnerID=40&md5=7ad0341f71c92dc9cb2b7a1785c5f769.

DOI: 10.1016/j.addma.2018.04.036

Google Scholar

[28] H. Zhang, D. Gu, J. Yang, D. Dai, T. Zhao, C. Hong, et al. Selective laser melting of rare earth element Sc modified aluminum alloy: Thermodynamics of precipitation behavior and its influence on mechanical properties. Addit Manuf. 23 (2018) 1–12.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050252712&doi=10.1016%2Fj.addma.2018.07.002&partnerID=40&md5=e301c15f8724f33653cc92f2091d31f6.

DOI: 10.1016/j.addma.2018.07.002

Google Scholar

[29] B. Liu, Z. Kuai, Z. Li, J. Tong, P. Bai, B. Li, et al. Performance consistency of AlSi10Mg alloy manufactured by simulating multi laser beam selective laser melting (SLM): Microstructures and mechanical properties. Materials (Basel). 11 (12) (2018).: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057251702&doi=10.3390%2Fma11122354&partnerID=40&md5=80cc06f922abef7efdee7bf2a95ae1bd.

DOI: 10.3390/ma11122354

Google Scholar