[1]
S.M. Wagner, R.O. Walton. Additive manufacturing's impact and future in the aviation industry. Prod Plan Control. 27(13) (2016) 1124–1130: http://dx.doi.org/10.1080/09537287.2016.1199824.
DOI: 10.1080/09537287.2016.1199824
Google Scholar
[2]
E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille. Additive Manufacturing of Titanium Alloy for Aircraft Components. Procedia CIRP. 35 (2015) 55–60.
DOI: 10.1016/j.procir.2015.08.061
Google Scholar
[3]
B.K. Post, P.C. Chesser, R.F. Lind, A. Roschli, L.J. Love, K.T. Gaul, et al. Using Big Area Additive Manufacturing to directly manufacture a boat hull mould. Virtual Phys Prototyp 14(2) (2019) 123–129.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055059027&doi=10.1080%2F17452759.2018.1532798&partnerID=40&md5=d61c0b56637e268d40cfbbbe4a581e31.
DOI: 10.1080/17452759.2018.1532798
Google Scholar
[4]
P.A. Lykov, R.M. Baitimerov, A.V. Panfilov, A.O. Guz. The manufacturing of TiAl6V4 implants using selective laser melting technology. In: IOP Conference Series: Materials Science and Engineering. (2017).
DOI: 10.1088/1757-899x/248/1/012004
Google Scholar
[5]
H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, Hu M. A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting. PLoS One. 11(7) (2016).
DOI: 10.1371/journal.pone.0158513
Google Scholar
[6]
R. Wauthle, J, van der Stok, S. Amin Yavari, J. Van Humbeeck, J-P. Kruth, A.A. Zadpoor, et al. Additively manufactured porous tantalum implants. Acta Biomater. 14 (2015) 217–225.
DOI: 10.1016/j.actbio.2014.12.003
Google Scholar
[7]
J. Tian, W. Zhu, Q. Wei, S. Wen, S. Li, B. Song, et al. Process optimization, microstructures and mechanical properties of a Cu-based shape memory alloy fabricated by selective laser melting. J Alloys Compd. (2019) 754–764.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060520603&doi=10.1016%2Fj.jallcom.2019.01.153&partnerID=40&md5=b6cdfb2cebd4ab17457c6e9a5cdfac21.
DOI: 10.1016/j.jallcom.2019.01.153
Google Scholar
[8]
J. Sun, Y. Yang, D. Wang. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method. Opt Laser Technol. 49 (2013) 118–124.
DOI: 10.1016/j.optlastec.2012.12.002
Google Scholar
[9]
N. Contuzzi, S.L. Campanelli, C. Casavola, L. Lamberti. Manufacturing and characterization of 18Ni marage 300 lattice components by selective laser melting. Materials (Basel). 6(8) (2013) 3451–3468.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884397772&doi=10.3390%2Fma6083451&partnerID=40&md5=c541bd89e28138752428eac81d2bdef1.
DOI: 10.3390/ma6083451
Google Scholar
[10]
Z. Zhao, L. Li, L. Tan, P. Bai, J. Li, L. Wu, et al. Simulation of stress field during the selective laser melting process of the nickel-based superalloy, GH4169. Materials (Basel). 11(9) (2018).: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052194181&doi=10.3390%2Fma11091525&partnerID=40&md5=f180f13197d7581db10137f4fcf99b83.
DOI: 10.3390/ma11091525
Google Scholar
[11]
P. Krakhmalev, I. Yadroitsev. Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti–SiC powder mixtures. Intermetallics. 46 (2014) 147–155.
DOI: 10.1016/j.intermet.2013.11.012
Google Scholar
[12]
L.P. Lam, D.Q. Zhang, Z.H. Liu, C.K. Chua. Phase analysis and microstructure characterisation of AlSi10Mg parts produced by Selective Laser Melting. Virtual Phys Prototyp. 10(4) (2015)207–215.: http://www.tandfonline.com/doi/full/10.1080/17452759.2015.1110868.
DOI: 10.1080/17452759.2015.1110868
Google Scholar
[13]
M.V. Gerov, E.Y. Vladislavskaya, V.F. Terent'ev, D.V. Prosvirnin, O.S. Antonova, A.G. Kolmakov. Fatigue Strength of an AlSi10Mg Alloy Fabricated by Selective Laser Melting. Russ Metall. 2019(4) (2019) 392–397.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066930518&doi=10.1134%2FS0036029519040098&partnerID=40&md5=8e0c8e53151a7dcd659e24ee807699bf.
DOI: 10.1134/s0036029519040098
Google Scholar
[14]
D. Gu, H. Wang, F. Chang, D. Dai, P. Yuan, Y.C. Hagedorn, et al. Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties. In: Physics Procedia. (2014) 108–116.
DOI: 10.1016/j.phpro.2014.08.153
Google Scholar
[15]
N. Kang, P. Coddet, H. Liao, T. Baur, C. Coddet. Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting. Appl Surf Sci. 378 (2016) 142–149.
DOI: 10.1016/j.apsusc.2016.03.221
Google Scholar
[16]
S. Scudino, C. Unterdörfer, K.G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel, et al. Additive manufacturing of Cu-10Sn bronze. Mater Lett. 156 (2015) 202–204.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930937755&doi=10.1016%2Fj.matlet.2015.05.076&partnerID=40&md5=ff83cab0fcb15923006726eff23bf2cb.
DOI: 10.1016/j.matlet.2015.05.076
Google Scholar
[17]
K. Zhuravleva, M. Bönisch, K.G. Prashanth, U. Hempel, A. Helth, T. Gemming, et al. Production of Porous β-Type Ti-40Nb Alloy for Biomedical Applications: Comparison of Selective Laser Melting and Hot Pressing. Materials (Basel) [Internet]. 6(12) (2013) 5700–5712.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890280752&doi=10.3390%2Fma6125700&partnerID=40&md5=5f111514c0ac3f0d680f1cd149f2a9df.
DOI: 10.3390/ma6125700
Google Scholar
[18]
H. Attar, L. Löber, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, et al. Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater Sci Eng A. 625 (2015) 350–356.
DOI: 10.1016/j.msea.2014.12.036
Google Scholar
[19]
T.B. Sercombe, X. Li. Selective laser melting of aluminium and aluminium metal matrix composites: Review. Mater Technol. 31(2) (2016) 77–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963818873&doi=10.1179%2F1753555715Y.0000000078&partnerID=40&md5=e4832208e341b81a55c5a8fc95ba87f0.
DOI: 10.1179/1753555715y.0000000078
Google Scholar
[20]
C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, et al. Review of selective laser melting: Materials and applications. Vol. 2, Applied Physics Reviews. (2015).
DOI: 10.1063/1.4935926
Google Scholar
[21]
S. Singh, V.S. Sharma, A. Sachdeva. Progress in selective laser sintering using metallic powders: a review. Mater Sci Technol. (2016) 1–13.: http://www.tandfonline.com/doi/full/10.1179/1743284715Y.0000000136.
Google Scholar
[22]
T. Yang, T. Liu, W. Liao, E. MacDonald, H. Wei, X. Chen, et al. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting. J Mater Process Technol. 266 (2019) 26–36.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055855066&doi=10.1016%2Fj.jmatprotec.2018.10.015&partnerID=40&md5=e6bade6d0c065cb8f232ad65b26b1c0c.
DOI: 10.1016/j.jmatprotec.2018.10.015
Google Scholar
[23]
T. Kimura, T. Nakamoto, T. Ozaki, K. Sugita, M. Mizuno, H. Araki. Microstructural formation and characterization mechanisms of selective laser melted Al–Si–Mg alloys with increasing magnesium content. Mater Sci Eng A. 754 (2019) 786–798.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062221473&doi=10.1016%2Fj.msea.2019.02.015&partnerID=40&md5=026a04bcef9170de42c6b1c41adaced6.
DOI: 10.1016/j.msea.2019.02.015
Google Scholar
[24]
M. Wang, B. Song, Q. Wei, Y. Zhang, Y. Shi. Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy. Mater Sci Eng A. 739 (2019) 463–472.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055157698&doi=10.1016%2Fj.msea.2018.10.047&partnerID=40&md5=e4d70ce79562f5bdc4a6863a00d0affd.
DOI: 10.1016/j.msea.2018.10.047
Google Scholar
[25]
L. Xi, P. Wang, K.G. Prashanth, H. Li, H.V. Prykhodko, S. Scudino, et al. Effect of TiB2 particles on microstructure and crystallographic texture of Al-12Si fabricated by selective laser melting. J Alloys Compd. 786 (2019) 551–556.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061043516&doi=10.1016%2Fj.jallcom.2019.01.327&partnerID=40&md5=52c1605cdbacd5ea4c22d52837568faa.
DOI: 10.1016/j.jallcom.2019.01.327
Google Scholar
[26]
S. Pauly, P. Wang, U. Kühn, K. Kosiba. Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu. Addit Manuf. 22 (2018) 753–577.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049577818&doi=10.1016%2Fj.addma.2018.05.034&partnerID=40&md5=35971c2cec8cf26590335adf8bfcbc1e.
DOI: 10.1016/j.addma.2018.05.034
Google Scholar
[27]
A.B. Anwar, Q-C. Pham. Study of the spatter distribution on the powder bed during selective laser melting. Addit Manuf. 22 (2018) 86–97.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046805443&doi=10.1016%2Fj.addma.2018.04.036&partnerID=40&md5=7ad0341f71c92dc9cb2b7a1785c5f769.
DOI: 10.1016/j.addma.2018.04.036
Google Scholar
[28]
H. Zhang, D. Gu, J. Yang, D. Dai, T. Zhao, C. Hong, et al. Selective laser melting of rare earth element Sc modified aluminum alloy: Thermodynamics of precipitation behavior and its influence on mechanical properties. Addit Manuf. 23 (2018) 1–12.: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050252712&doi=10.1016%2Fj.addma.2018.07.002&partnerID=40&md5=e301c15f8724f33653cc92f2091d31f6.
DOI: 10.1016/j.addma.2018.07.002
Google Scholar
[29]
B. Liu, Z. Kuai, Z. Li, J. Tong, P. Bai, B. Li, et al. Performance consistency of AlSi10Mg alloy manufactured by simulating multi laser beam selective laser melting (SLM): Microstructures and mechanical properties. Materials (Basel). 11 (12) (2018).: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057251702&doi=10.3390%2Fma11122354&partnerID=40&md5=80cc06f922abef7efdee7bf2a95ae1bd.
DOI: 10.3390/ma11122354
Google Scholar