[1]
L. David Bourella, J. Joseph Beaman, Jr.a, Ming C. Leub and David W. Rosenc. A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: Looking back and Looking Ahead.RapidTech (2009).
Google Scholar
[2]
J.J. Beaman Solid freeform fabrication: an historical perspective. The university of Texas. Austin, Texas.
Google Scholar
[3]
A. et al. Techel Laser additive manufacturing of turbine componenrs, precisely and repeatable. Frounhofer Institute for material and beam technology, internet izdaniye Laser institute of America. Free access: www.lia.org/blog/category/laser-insights-2.
Google Scholar
[4]
L. Sabina Campanelli et. al. Capabilities and performances of the selective laser melting process. Polytechnic of bari, Departament of management and mechanical engineering, Viale Japigia, 182 Italy.
Google Scholar
[5]
Yu.A. Bezobrazov Analysis of the structure of samples obtained by DMLS and SML-methods of rapid prototyping. SPbSPU.
Google Scholar
[6]
N.N. Shabrov Real achievements of virtual reality. Rational enterprise managment. 2 (2011) 46-48.
Google Scholar
[7]
3-D printing manufacturing process is here. Independent global forum for the unmanned aircraft systems community, UAS Vision.
Google Scholar
[8]
B. Khoshnevis et al. Metallic part fabrication using Selective Inhibition Sintering. Departament of industrial and systems engineering university of South California, Los Angeles, CA 90089, USA.
Google Scholar
[9]
5-akselinen pystykarainen tyostokeskus MATSUURA MAM72-35V on uudistunut. 18.12.2012.: http://www.makrum.fi/blog/matsuura.
Google Scholar
[10]
V. Promakhov, A. Zhukov, S. Kovalchuk Structure and properties of ceramic composite materials ZrO2+20%Al2O3, obtained using additive technologies. Moscow. Electronic edition. (2019) 377-387.
DOI: 10.3390/ma11122361
Google Scholar
[11]
C.G. Levi, J.Y. Yang, B.J. Dalgleish Processing and performance of an all-oxide ceramic composite. J. Am. Ceram. Soc. (1998) 2077-2086.
Google Scholar
[12]
H. Ohnabe, S. Masaki, M. Onozuka Potential application of ceramic matrix composites to aero-engine components. Compos. Part A Appl. Sci. Manuf. (1999) 489-496.
DOI: 10.1016/s1359-835x(98)00139-0
Google Scholar
[13]
V. Tomeckova, J.W. Halloran Cure depth for photopolymerization of ceramic suspensions. J. Eur. Ceram. Soc. (2010) 3023-3033.
DOI: 10.1016/j.jeurceramsoc.2010.06.004
Google Scholar
[14]
L. Jin, G. Zhou, S. Shimai ZrO2-doped Y2O3 transparent ceramics via slip casting and vacuum sintering. J. Eur. Ceram. Soc. (2010) 2139-2143.
DOI: 10.1016/j.jeurceramsoc.2010.04.004
Google Scholar
[15]
V.F. Molchanov Efficiency and quality of chrome plating parts. Кiev, Technique. (1979).
Google Scholar
[16]
V.F. Molchanov Restoration and hardening of details of cars with chrome. Moskow, Technique. (1981).
Google Scholar
[17]
N. Travitzky, A. Bonet, B. Dermeik, T. Fey Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. (2014) 729-754.
DOI: 10.1002/adem.201400097
Google Scholar
[18]
C. Santos, L.H.P. Teixeira, J.K.M.F. Daguano Mechanical properties and cytotoxicity of 3Y-TZP bioceramics reinforced with Al2O3 particles. Ceram. Int. (2009) 709-718.
DOI: 10.1016/j.ceramint.2008.02.004
Google Scholar
[19]
I.A. Zhukov, S.S. Bondarchuk, S.A. Balasaev, A.B. Vorozhtsov Nonliner dependence of sprayed drop sizes on the mass fraction of a salt precursor component. Russin phys. J. (2018) 1845-1847.
DOI: 10.1007/s11182-018-1291-z
Google Scholar
[20]
V.F. Terentyev Fatigue strength of metals and alloys. Publisher Intermet-Ingineering. (2002).
Google Scholar