[1]
S.V. Dubinskiy, Yu.M. Feygenbaum, A.A. Selikhov, S.A. Gvozdev, V.M. Ordyntsev, Study of accidental in-service impacts into wing of commercial aircraft, Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 18/4(3) (2016) 604-611.
Google Scholar
[2]
M. Sayer, N.B. Bektaş, O. Sayman, An experimental investigation on the impact behavior of hybrid composite plates, Composite Structures, 92/5 (2010) 1256-1262.
DOI: 10.1016/j.compstruct.2009.10.036
Google Scholar
[3]
G.A.O. Davies, R. Olsson, Impact on composite structures, The Aeronautical Journal, 108/1089 (2004) 541-563.
Google Scholar
[4]
R.C. Batra, G. Gopinath, J.Q. Zheng, J. Q. (2012). Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates, Composite Structures, 94/2 (2012) 540-547.
DOI: 10.1016/j.compstruct.2011.08.015
Google Scholar
[5]
A. Smotrova, A.V. Smotrov, Features of damage to aircraft structures from PCM, The results of basic research in applied problems of the aircraft industry, Moscow, (2016) 418-429.
Google Scholar
[6]
W. Li, C.C. Matthews, K. Yang, M.T. Odarczenko, S.R. White, N.R. Sottos, Autonomous indication of mechanical damage in polymeric coatings, J. Advanced Materials, 28/11 (2016) 2189-2194.
DOI: 10.1002/adma.201505214
Google Scholar
[7]
S. Vidinejevs, O. Strekalova, A. Aniskevich, S. Gaidukov, Development of a composite with an inherent function of visualization of a mechanical action, J. Mechanics of Composite Materials, 49/1 (2013) 77-84.
DOI: 10.1007/s11029-013-9323-9
Google Scholar
[8]
K. Drechsler, W. Martin, B. Schuler, Wendel DE Patent ЕР 0538580 A1 (1993).
Google Scholar
[9]
N.I. Baurova, N.I. Zorin, RU Patent RU №2439518 С1 (2010).
Google Scholar
[10]
S. Kling, T. Czigány, Damage detection and self-repair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling, Composites Science and Technology, 99 (2014) 82–88.
DOI: 10.1016/j.compscitech.2014.05.020
Google Scholar
[11]
B.E. Koene, J.B. Beck, D. Metrey, J.C. Gunter, M.K. Newsome, Impact damage indicating coating systems for composites, International SAMPE Symposium and Exhibition (Proceedings), 54 (2009) 10.
Google Scholar
[12]
S.A. Odom, A.C. Jackson, A.M. Prokup, S. Chayanupatkul, N.R. Sottos, S.R. White, J.S. Moore, Visual indication of mechanical damage using core–shell microcapsules. ACS Applied Materials & Interfaces, 3/12 (2011) 4547–4551.
DOI: 10.1021/am201048a
Google Scholar
[13]
S. Vidinejevs, A.N. Aniskevich, A. Gregor, M. Sjöberg, G. Alvarez, Smart polymeric coatings for damage visualization in substrate materials, J. Intelligent Material Systems and Structures, 23/12 (2012) 1371–1377.
DOI: 10.1177/1045389x12447289
Google Scholar
[14]
R.E. Toivola, Z. Shi, S.-H. Jang, A. Jen, G. Georgeson, B. Flinn, Damage detection for aerospace composites using matrix resins functionalized with fluorescent probe molecules, International SAMPE Technical Conference, (2013) 2076-2090.
Google Scholar
[15]
S.L. Potisek, D.A. Davis, S.R. White, N.R. Sottos, J.S. Moore, US Patent 8236914 В2 (2009).
Google Scholar
[16]
A. Chopra, J. Deng, C.R. Hickenboth, R.M. Peffer, US Patent 20130269445 (2013).
Google Scholar
[17]
S. Lörcher, T. Winkler, K. Makyła, C. Ouellet-Plamondon, I. Burgert, N. Bruns, Mechanical unfolding of a fluorescent protein enables self-reporting of damage in carbon-fibre-reinforced composites, Journal of Materials Chemistry A, 2/17 (2014) 6231-6237.
DOI: 10.1039/c3ta14803c
Google Scholar
[18]
R. Toivola, P.-N. Lai, J. Yang, S.-H. Jang, A. K.-Y. Jen, B.D. Flinn, Mechanochromic fluorescence in epoxy as a detection method for barely visible impact damage in CFRP composites. Composites Science and Technology, 139 (2017) 74–82.
DOI: 10.1016/j.compscitech.2016.11.026
Google Scholar
[19]
O.S. Buslaeva, S.B. Sapoznikov, RU Patent 2072720 (1997).
Google Scholar
[20]
R. De Meis. Aircraft skin that bruises. Aerospace America, July (1987) 33-34.
Google Scholar
[21]
Q. Morelle, S. Senani, L. Nicole, M. Gaudon, L. Rozes, E. Le Bourhis, Hybrid piezochromic coatings for impact detection on composite substrates for aeronautic, Materials Letters, 253 (2019) 140-143.
DOI: 10.1016/j.matlet.2019.06.045
Google Scholar
[22]
S.L. Chernyshev, M.C. Zichenkov, S.A. Smotrova, A.V. Smotrov, V.M. Novotortsev, I.L. Eremenko, Z.V. Dobrokhotova, RU Patent 2645431 С1 (2018).
Google Scholar
[23]
T. Danowski, US Patent 2008/0083286 A1 (2008).
Google Scholar
[24]
W.R. Cooper, H.M. Jess, US Patent 20020165294 A1 (2002).
Google Scholar
[25]
M. J.Robb, W. Li, R.C.R. Gergely, C.C. Matthews, S.R. White, N.R. Sottos, J.S/ Moore, A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission, ACS Central Science, 2/9 (2016) 598–603.
DOI: 10.1021/acscentsci.6b00198
Google Scholar
[26]
J. Zou, Y. Liu, B. Shan, A. Chattopadhyay, L.L. Dai, Early damage detection in epoxy matrix using cyclobutane-based polymers, Smart Materials and Structures, 23/9 (2014) 095038.
DOI: 10.1088/0964-1726/23/9/095038
Google Scholar
[27]
Information on http://e-izol.ru.
Google Scholar
[28]
K.R. Hart, P.X.L. Chia, L.E. Sheridan, E.D. Wetzel, N.R. Sottos, S. R. White, Comparison of compression-after-impact and flexure-after-impact protocols for 2D and 3D woven fiber-reinforced composites, Composites Part A: Applied Science and Manufacturing, 101 (2017) 471–479.
DOI: 10.1016/j.compositesa.2017.07.005
Google Scholar