Composite Materials with the Coating to Detect Barely Visible Impact Based on the Retroreflective Film

Article Preview

Abstract:

A new method of indicating contact damage of composite materials, using a polymer retroreflective film (PRF) with micro-prisms, is proposed. Impact contact action leads to deformation of microprisms and with directed lighting allows seeing the place of impact in the form of a dark spot. In experimental studies, using STEF fibreglass as an example, the dependences of the spot diameter on the contact pressure up to 530 MPa were studied. An assessment of the residual strength and stiffness of a composite specimen-beam with a contact defect was obtained with three-point bending. It is shown that, during bending, the strength of STEF with contact defects decreases from 615 to 386 MPa. The data obtained allow to assess the danger of contact pressure by the known diameter of the dark spot on the PRF.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

949-954

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.V. Dubinskiy, Yu.M. Feygenbaum, A.A. Selikhov, S.A. Gvozdev, V.M. Ordyntsev, Study of accidental in-service impacts into wing of commercial aircraft, Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 18/4(3) (2016) 604-611.

Google Scholar

[2] M. Sayer, N.B. Bektaş, O. Sayman, An experimental investigation on the impact behavior of hybrid composite plates, Composite Structures, 92/5 (2010) 1256-1262.

DOI: 10.1016/j.compstruct.2009.10.036

Google Scholar

[3] G.A.O. Davies, R. Olsson, Impact on composite structures, The Aeronautical Journal, 108/1089 (2004) 541-563.

Google Scholar

[4] R.C. Batra, G. Gopinath, J.Q. Zheng, J. Q. (2012). Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates, Composite Structures, 94/2 (2012) 540-547.

DOI: 10.1016/j.compstruct.2011.08.015

Google Scholar

[5] A. Smotrova, A.V. Smotrov, Features of damage to aircraft structures from PCM, The results of basic research in applied problems of the aircraft industry, Moscow, (2016) 418-429.

Google Scholar

[6] W. Li, C.C. Matthews, K. Yang, M.T. Odarczenko, S.R. White, N.R. Sottos, Autonomous indication of mechanical damage in polymeric coatings, J. Advanced Materials, 28/11 (2016) 2189-2194.

DOI: 10.1002/adma.201505214

Google Scholar

[7] S. Vidinejevs, O. Strekalova, A. Aniskevich, S. Gaidukov, Development of a composite with an inherent function of visualization of a mechanical action, J. Mechanics of Composite Materials, 49/1 (2013) 77-84.

DOI: 10.1007/s11029-013-9323-9

Google Scholar

[8] K. Drechsler, W. Martin, B. Schuler, Wendel DE Patent ЕР 0538580 A1 (1993).

Google Scholar

[9] N.I. Baurova, N.I. Zorin, RU Patent RU №2439518 С1 (2010).

Google Scholar

[10] S. Kling, T. Czigány, Damage detection and self-repair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling, Composites Science and Technology, 99 (2014) 82–88.

DOI: 10.1016/j.compscitech.2014.05.020

Google Scholar

[11] B.E. Koene, J.B. Beck, D. Metrey, J.C. Gunter, M.K. Newsome, Impact damage indicating coating systems for composites, International SAMPE Symposium and Exhibition (Proceedings), 54 (2009) 10.

Google Scholar

[12] S.A. Odom, A.C. Jackson, A.M. Prokup, S. Chayanupatkul, N.R. Sottos, S.R. White, J.S. Moore, Visual indication of mechanical damage using core–shell microcapsules. ACS Applied Materials & Interfaces, 3/12 (2011) 4547–4551.

DOI: 10.1021/am201048a

Google Scholar

[13] S. Vidinejevs, A.N. Aniskevich, A. Gregor, M. Sjöberg, G. Alvarez, Smart polymeric coatings for damage visualization in substrate materials, J. Intelligent Material Systems and Structures, 23/12 (2012) 1371–1377.

DOI: 10.1177/1045389x12447289

Google Scholar

[14] R.E. Toivola, Z. Shi, S.-H. Jang, A. Jen, G. Georgeson, B. Flinn, Damage detection for aerospace composites using matrix resins functionalized with fluorescent probe molecules, International SAMPE Technical Conference, (2013) 2076-2090.

Google Scholar

[15] S.L. Potisek, D.A. Davis, S.R. White, N.R. Sottos, J.S. Moore, US Patent 8236914 В2 (2009).

Google Scholar

[16] A. Chopra, J. Deng, C.R. Hickenboth, R.M. Peffer, US Patent 20130269445 (2013).

Google Scholar

[17] S. Lörcher, T. Winkler, K. Makyła, C. Ouellet-Plamondon, I. Burgert, N. Bruns, Mechanical unfolding of a fluorescent protein enables self-reporting of damage in carbon-fibre-reinforced composites, Journal of Materials Chemistry A, 2/17 (2014) 6231-6237.

DOI: 10.1039/c3ta14803c

Google Scholar

[18] R. Toivola, P.-N. Lai, J. Yang, S.-H. Jang, A. K.-Y. Jen, B.D. Flinn, Mechanochromic fluorescence in epoxy as a detection method for barely visible impact damage in CFRP composites. Composites Science and Technology, 139 (2017) 74–82.

DOI: 10.1016/j.compscitech.2016.11.026

Google Scholar

[19] O.S. Buslaeva, S.B. Sapoznikov, RU Patent 2072720 (1997).

Google Scholar

[20] R. De Meis. Aircraft skin that bruises. Aerospace America, July (1987) 33-34.

Google Scholar

[21] Q. Morelle, S. Senani, L. Nicole, M. Gaudon, L. Rozes, E. Le Bourhis, Hybrid piezochromic coatings for impact detection on composite substrates for aeronautic, Materials Letters, 253 (2019) 140-143.

DOI: 10.1016/j.matlet.2019.06.045

Google Scholar

[22] S.L. Chernyshev, M.C. Zichenkov, S.A. Smotrova, A.V. Smotrov, V.M. Novotortsev, I.L. Eremenko, Z.V. Dobrokhotova, RU Patent 2645431 С1 (2018).

Google Scholar

[23] T. Danowski, US Patent 2008/0083286 A1 (2008).

Google Scholar

[24] W.R. Cooper, H.M. Jess, US Patent 20020165294 A1 (2002).

Google Scholar

[25] M. J.Robb, W. Li, R.C.R. Gergely, C.C. Matthews, S.R. White, N.R. Sottos, J.S/ Moore, A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission, ACS Central Science, 2/9 (2016) 598–603.

DOI: 10.1021/acscentsci.6b00198

Google Scholar

[26] J. Zou, Y. Liu, B. Shan, A. Chattopadhyay, L.L. Dai, Early damage detection in epoxy matrix using cyclobutane-based polymers, Smart Materials and Structures, 23/9 (2014) 095038.

DOI: 10.1088/0964-1726/23/9/095038

Google Scholar

[27] Information on http://e-izol.ru.

Google Scholar

[28] K.R. Hart, P.X.L. Chia, L.E. Sheridan, E.D. Wetzel, N.R. Sottos, S. R. White, Comparison of compression-after-impact and flexure-after-impact protocols for 2D and 3D woven fiber-reinforced composites, Composites Part A: Applied Science and Manufacturing, 101 (2017) 471–479.

DOI: 10.1016/j.compositesa.2017.07.005

Google Scholar