Change of the Elastic Characteristics of a Fiber-Reinforced Laminate as a Result of Progressive Fatigue Damage

Article Preview

Abstract:

It is a widely known fact that the stiffness of polymer composite materials decreases with the accumulation of fatigue damage under cyclic loading. The purpose of this article is to develop a method and obtain experimental data on decrease of the elastic characteristics of a fiber-reinforced laminate, as a result of progressive fatigue damage. The developed technique consists of two stages. At the first one, the natural frequencies and eigenmodes of the samples during their fatigue testing are experimentally obtained. The dependences of the natural frequencies of the samples on the number of loading cycles are found. At the second stage, the four elasticity parameters of the laminate monolayer (two Young modules, the shear module and Poisson's ratio) are identified via the natural frequencies. The inverse numerical/experimental technique for material properties identification is applied. The dependences of the natural frequencies and mentioned elastic characteristics on the relative fatigue life are obtained as experimental results of both modal and fatigue tests. The results can be useful to study the fatigue behavior of the investigated materials and to create methods for calculating fatigue life.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

955-960

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kelly A. The engineering triumph of carbon fibre. Composites and nanostructures, 2009, №1, p.38 – 49.

Google Scholar

[2] Mandall J.F., Samborsky D.D., Cairns D.S. Fatigue of composite materials and substructures for wind turbine blades: Sandia report SAND 2002-0771. Sandia National Laboratories, USA, 2002, 279 p.

DOI: 10.2172/793410

Google Scholar

[3] Bedewi N.E., Kung D.N. Effect of fatigue loading on the modal properties of composite structures and its utilization for prediction of residual life. Composite Structures. V. 37 (1997). Issues 3–4. pp.357-371.

DOI: 10.1016/s0263-8223(97)00028-7

Google Scholar

[4] Damira A.N., Elkhatibb A., Nassefc G. Prediction of fatigue life using modal analysis for grey and ductile cast iron. International Journal of Fatigue. V. 29. (2007). Issue 3. pp.499-507.

DOI: 10.1016/j.ijfatigue.2006.05.004

Google Scholar

[5] Kulkarni P.V., Sawant P.J., Kulkarni V.V. Fatigue life prediction and modal analysis of carbon fiber reinforced composites. Advances in Materials and Processing Technologies. V.4. (2018). Issue 4. pp.651-659.

DOI: 10.1080/2374068x.2018.1488799

Google Scholar

[6] Abo-Elkhier M., Hamada A.A. El-Deen B. Prediction of fatigue life of glass fiber reinforced polyester composites using modal testing. International Journal of Fatigue. 69 (2014). pр.28–35.

DOI: 10.1016/j.ijfatigue.2012.10.002

Google Scholar

[7] Giannoccaro N.I., Messina A., R.Nobile, Panella F.W. Fatigue damage evaluation of notched specimens through resonance and anti-resonance data. Engineering Failure Analysis. V. 13. Issue 3. 2006. pp.340-352.

DOI: 10.1016/j.engfailanal.2005.02.015

Google Scholar

[8] Wang J., Tan N., Zhou S., Sun Q. Experimental Study on High-Cycle Fatigue Behavior of GFRP-Steel Sleeve Composite Cross Arms. Advances in Civil Engineering. 2018, Article ID 6346080, 12 p.

DOI: 10.1155/2018/6346080

Google Scholar

[9] Cesnik M., Slavic J., Boltezar M. Uninterrupted and accelerated vibrational fatigue testing with simultaneous monitoring of the natural frequency and damping. Journal of Sound and Vibration. V. 331 (2012). pp.5370-5382.

DOI: 10.1016/j.jsv.2012.06.022

Google Scholar

[10] Michel S.A., Kieselbacha R., Martens H.J. Fatigue strength of carbon fibre composites up to the gigacycle regime (gigacycle-composites). International Journal of Fatigue. V.28 (2006). p.261–270.

DOI: 10.1016/j.ijfatigue.2005.05.005

Google Scholar

[11] Reis P.N.B., Ferreira J.A.M., Costa J.D.M., Richardson M.O.W. Fatigue life evaluation for carbon/epoxy laminate composites under constant and variable block loading Composites Science and Technology. V. 69 (2009). p.154–160.

DOI: 10.1016/j.compscitech.2008.09.043

Google Scholar

[12] Patel A.G., Shah D.S., Patel D.C. A review of progressive damage analysis and fatigue life prediction for degraded e-glass FRP material. International Journal of Technical Innovation in Modern Engineering & Science. V.4 (2018). Issue 12. pp.295-299.

Google Scholar

[13] Karahana M., Lomov S.V., Bogdanovich A.E., Verpoesta I. Fatigue tensile behavior of carbon/epoxy composite reinforced with non-crimp 3D orthogonal woven fabric. Composites Science and Technology. V.71, Issue 16. pp.1961-1972.

DOI: 10.1016/j.compscitech.2011.09.015

Google Scholar

[14] Liang S., Gning P.B., Guillaumat L. Properties evolution of flax/epoxy composites under fatigue loading. International Journal of Fatigue, Elsevier, 2014, 63, pp.36-45.

DOI: 10.1016/j.ijfatigue.2014.01.003

Google Scholar

[15] Van Paepegem W., De Baere I., Lamkanfi E., Degrieck J. Poisson's ratio as a sensitive indicator of (fatigue) damage in fibre-reinforced plastics. Fatigue & fracture of engineering materials & structures. V.30(4) (2007). pp.269-276.

DOI: 10.1111/j.1460-2695.2007.01095.x

Google Scholar

[16] ASTM standard D 3479. Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials. ASTM International, 2007. 6 p.

Google Scholar

[17] Nikhamkin M.Sh., Sazhenkov N.A., Samodurov D. Fatigue testing method of test coupon and structurally equivalent samples of carbon fiber reinforced polymer for gas turbine engine parts and assemblies. Solid State Phenomena. 284 SSP (2018). pp.43-47.

DOI: 10.4028/www.scientific.net/ssp.284.43

Google Scholar

[18] Nikhamkin M.Sh., Sazhenkov N. A., Samodurov D. Fatigue fracture of fiber reinforced polymer honeycomb composite sandwich structures for gas turbine engines. Journal of Physics: Conference Series, 843 (1) (2018). Article № 012029.

DOI: 10.1088/1742-6596/843/1/012029

Google Scholar

[19] Stanbridge A.B. Ewins D.J. Modal testing using a scanning laser Doppler vibrometer. Mechanical Systems and Signal Processing. V.13 (1999). № 2. pp.255-270.

DOI: 10.1006/mssp.1998.1209

Google Scholar

[20] Nikhamkin, M., Bolotov, B. Experimental and finite element analysis of natural modes and frequencies of hollow fan blades (2014) Applied Mechanics and Materials, 467, pp.306-311.

DOI: 10.4028/www.scientific.net/amm.467.306

Google Scholar

[21] Grinev M.A., Anoshkin A.N., Pisarev P.V., Shipunov G.S., Nikhamkin M.Sh, Balakirev A.A., Konev I.P., Golovkin. Experimental and numerical research of the dynamic response of composite outlet guide vane for aircraft jet engine. PNRPU Mechanics Bulletin, (4) (2016). pp.106-119.

DOI: 10.15593/perm.mech/2016.4.07

Google Scholar

[22] Sol H, Hua H, De Visscher J, Vantomme J, De Wilde WP. A mixed numerical/experimental technique for the nondestructive identification of the stiffness properties of fiber reinforced composite materials. J. Independent Nondestructive Testing and Evaluation.V.30(2) (1997). p.85–91.

DOI: 10.1016/s0963-8695(96)00049-7

Google Scholar

[23] Barkanov E.N., Chebakov M.I. Inverse technique for characterisation of elastic and dissipative properties of materials used in a composite repair of pipelines. Proceedings of XLII International Summer School–Conference APM 2014. pp.232-246.

Google Scholar

[24] Nikhamkin M. Sh., Sememnov S. V., Solomonov D. G. Application of Experimental Modal Analysis for Identification of Laminated Carbon Fiber-Reinforced Plastics Model Parameters. Proceedings of the 4th International Conference on Industrial Engineering. ICIE 2018. Lecture Notes in Mechanical Engineering. Springer, Cham. 2019. pp.487-497.

DOI: 10.1007/978-3-319-95630-5_51

Google Scholar

[25] Nikhamkin M. Sh., Sememnov S. V., Silberschmidt V.V., Solomonov D. G. Identification of elastic parameters of laminated carbon fiber plates using experimental modal analysis. ARPN Journal of Engineering and Applied Sciences. V.14. № 12 (2019). p.2279 – 2285.

Google Scholar