[1]
M. Nikhamkin, N. Sazhenkov, D. Samodurov. Fatigue fracture of fiber reinforced polymer honeycomb composite sandwich structures for gas turbine engines. Journal of Physics: Conference Series. – 2017. – Vol. 843. 5 p.
DOI: 10.1088/1742-6596/843/1/012029
Google Scholar
[2]
L.A. Coles, A. Roy, N. Sazhenkov, L. Voronov, M. Nikhamkin, V. Silberschmidt. Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part I – Deformation and damage behaviour. Engineering Fracture Mechanics. – 2020. –Vol. 222. - 18 p.
DOI: 10.1016/j.engfracmech.2018.12.003
Google Scholar
[3]
Comprehensive Composite Materials Volume 2, 2000, Pages 529-552.
Google Scholar
[4]
Carvelli, V., Pazmino, J., Lomov, S. V., Bogdanovich, A. E., Mungalov, D. D., & Verpoest, I. (2013). Quasi-static and fatigue tensile behavior of a 3D rotary braided carbon/epoxy composite. Journal of Composite Materials, 47(25), 3195–3209.
DOI: 10.1177/0021998312463407
Google Scholar
[5]
Dynamic Fracture in Carbon-fibre Composites: Effect of Steel and Ice Projectiles / L. A. Coles, A. Roy, L. Voronov, S. Semyonov, M. Nikhamkin, V. V. Silberschmidt // Procedia Structural Integrity. - 2016. - Vol. 2. - P. 366-372.
DOI: 10.1016/j.prostr.2016.06.047
Google Scholar
[6]
Impact damage in woven carbon fibre/epoxy laminates: Analysis of damage and dynamic strain fields, L. Coles, A. Roy, L. Voronov, S. Semenov, M. Nikhamkin, N. Sazhenkov, V. V. Silberschmidt , Procedia Engineering. - 2017. - Vol. 199 - P. 2500-2505.
DOI: 10.1016/j.proeng.2017.09.420
Google Scholar
[7]
Li, Li & Swolfs, Yentl & Straumit, Ilya & Yan, Xiong & Lomov, Stepan. (2016). Cluster analysis of acoustic emission signals for 2D and 3D woven carbon fiber/epoxy composites. Journal of Composite Materials. 50. 1921-1935.
DOI: 10.1177/0021998315597742
Google Scholar
[8]
H. Lee, D. Veysset, J.P. Singer, M. Retsch, G. Saini, T. Pezeril, K.A. Nelson, E.L. Thomas, A multiscale modeling methodology for damage progression in polymer-based composites, 12th International Conference on Fracture, ICF-12 6 (2009).
Google Scholar
[9]
ASTM D 3479/D 3479 M Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials, ASTM International, PA, 19428-2959 USA, (2012).
Google Scholar
[10]
Nikhamkin M.A., Konev I.P., Sazhenkov N.A., Samodurov D.A., Toropitsina A.V., Thermal state of a carbon fiber specimen under fatigue test, Fundamentalniye issledovaniya, 2015, №9-1, pp.44-49.
Google Scholar
[11]
Apinis R. Acceleration of fatigue tests of polymer composite materials by using high-frequency loadings, Mechanics of Composite Materials. - 2004. - Vol. 40, № 2. - P. 107-118.
DOI: 10.1023/b:mocm.0000025485.93979.dd
Google Scholar
[12]
Daggumati S., Baere I. De, Paepegem W. Van, Degrieck J., Xu J., Lomov S.V., Verpoest I.. Fatigue and post-fatigue stress-strain analysis of a 5-harness satin weave carbon fibre reinforced composite // Composites Science and Technology. - 2013. - Vol. 74. - P. 20-27.
DOI: 10.1016/j.compscitech.2012.09.012
Google Scholar
[13]
Bensadoun, F., Depuydt, D., Baets, J., Van Vuure, A.W., Verpoest, I. (2013). Influence of fibre architecture on impact and fatigue behaviour of flax fibre-based composites, International Conference on Composite Materials - 7, Montreal, Canada, 29 Jul 2013-03 Aug (2013).
DOI: 10.1016/j.compstruct.2017.05.005
Google Scholar
[14]
Ever J. Barbero, Javier Cabrera Barbero, Determination of material properties for progressive damage analysis of carbon/epoxy laminates, Mechanics of Advanced Materials and Structures, Volume 26, 2019, pp.938-947.
DOI: 10.1080/15376494.2018.1430281
Google Scholar
[15]
Garcea SC, Wang Y, Withers PJ. X-ray computed tomography of polymer composites. Compos Science and Technology 2018; Volume 156, p.305 –319.
DOI: 10.1016/j.compscitech.2017.10.023
Google Scholar
[16]
Garcea SC, Sinclair I, Spearing SM. In situ synchrotron tomographic evaluation of the effect of toughening strategies on fatigue micromechanisms in carbon fibre reinforced polymers. Compos Science and Technology 2015; Volume 109, p.32–39.
DOI: 10.1016/j.compscitech.2015.01.012
Google Scholar
[17]
Nixon-Pearson OJ, Hallett SR, Withers PJ, Rouse J. Damage development in open-hole composite specimens in fatigue. Part 1: Experimental investigation. Compos Struct 2013; Volume 106, p.882–889.
DOI: 10.1016/j.compstruct.2013.05.033
Google Scholar
[18]
S. Zabler, C. Fella, A. Dietrich, F. Nachtrab, M. Salamon, V. Voland, T. Ebensperger, S. Oeckl, R. Hanke, N. UhlmannHigh-resolution and high-speed CT in industry and research SPIE Optical Engineering + Applications (2012), p.850617.
DOI: 10.1117/12.964588
Google Scholar
[19]
Li Y, Pimenta S, Singgih J, Nothdurfter S, Schuffenhauer K. Experimental investigation of randomly-oriented tow-based discontinuous composites and their equivalent laminates. Compos Part A: Applied Science and Manufacturing 2017; Volume 102, p.64–75.
DOI: 10.1016/j.compositesa.2017.06.031
Google Scholar
[20]
Arif MF, Saintier N, Meraghni F, Fitoussi J, Chemisky Y, Robert G. Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66. Compos Part B Eng 2014; Volume 61, p.55–65.
DOI: 10.1016/j.compositesb.2014.01.019
Google Scholar