Features of Femtosecond Micromachining of Solid Transparent Materials

Article Preview

Abstract:

The paper reports the inscription of second- and third-order fiber Bragg gratings (FBGs) in single-mode optical fiber (SMF-28e+) via the line-by-line (LbL) and the point-by-point (PbP) methods using femtosecond laser radiation. The use of these methods jointly with based on an automatic spatial deviation correction system is considered. The approach allows to significantly improve spectral characteristics of FBG without the loss of fabrication performance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

993-998

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Tan, K.N. Sharafudeen, Y. Yue, and J. Qiu, Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications, Progress in Materials Science. 76 (2016) 154-228.

DOI: 10.1016/j.pmatsci.2015.09.002

Google Scholar

[2] V.V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Lindeet, Multiphoton ionization in dielectrics: comparison of circular and linear polarization, Physical review letters. 97 (2006) 237403.

DOI: 10.1103/physrevlett.97.237403

Google Scholar

[3] I. Mirza, N.M. Bulgakova, et. al., Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown, Scientific reports. 6 (2016) 39133.

DOI: 10.1038/srep39133

Google Scholar

[4] N.M. Bulgakova, et al., Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?, Journal of Applied Physics. 118 (2015) 233108.

DOI: 10.1063/1.4937896

Google Scholar

[5] P. Anderson, et. al., Glass: A new media for a new era?, 10th Workshop on Hot Topics in Storage and File Systems (HotStorage 18). (2018).

Google Scholar

[6] S.A. Vasil'ev, O.I. Medvedkov, I.G. Korolev, A.S. Bozhkov, A.S. Kerkov, and E.M. Dianov, Fiber gratings and their application, Quantum Electronics. 35 (2005) 1085-1103.

DOI: 10.1070/qe2005v035n12abeh013041

Google Scholar

[7] A.V. Dostovalov, A. A. Wolf, and S. A. Babin, Long period fibre grating writing with a slit-apertured femtosecond laser beam, Quantum Electronics. 45 (2015) 235-239.

DOI: 10.1070/qe2015v045n03abeh015647

Google Scholar

[8] E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.H. Her, E. Mazur, and J.P. Callan, Three-dimensional optical storage inside transparent materials, Optical Letter. 21 (1996) 2023-2025.

DOI: 10.1364/ol.21.002023

Google Scholar

[9] J. Qiu, K. Miura, and K. Hirao, Three-Dimensional Optical Memory Using Glasses as a Recording Medium through a Multi-Photon Absorption Process, Jpn. J. Appl. Phys. 37 (1998) 103-106.

DOI: 10.1143/jjap.37.2263

Google Scholar

[10] Y. Sikorski, A.A. Said, P. Bado, R. Maynard, C. Florea, and K.A. Winick, Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses, Electronics Letters. 36 (2000) 226-227.

DOI: 10.1049/el:20000172

Google Scholar

[11] J. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mutsuyu, and K. Hirao, Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions, Appl. Phys. Lett. 73 (1998) 1763-1765.

DOI: 10.1063/1.122274

Google Scholar

[12] Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, Three-Dimensional Microscopic Crystallization in Photosensitive Glass by Femtosecond Laser Pulses at Nonresonant Wavelength, Jpn. J. Appl. Phys. 37 (1998) 94-96.

DOI: 10.1143/jjap.37.l94

Google Scholar

[13] M. Will, S. Nolte, B.N. Chichkov, and A. Tunnermann, Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses, Appl. Opt. 41 (2002) 4360-4364.

DOI: 10.1364/ao.41.004360

Google Scholar

[14] D.N. Fittinghoff, C.B. Schaffer, E. Mazur, and J.A. Squier, Time-decorrelated multifocal micromachining and trapping, J. Sel. Top. Quantum Electron. 7 (2001) 559-566.

DOI: 10.1109/2944.974227

Google Scholar

[15] K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator, Opt. Lett. 26 (2001) 1516-1518.

DOI: 10.1364/ol.26.001516

Google Scholar

[16] Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses, Electronics Letters. 36 (2000) 226-227.

DOI: 10.1049/el:20000172

Google Scholar

[17] R.V. Chkalov, K.S. Khorkov, D.A. Kochuev, N.N. Davydov, N.N. Davydov, V.G. Prokoshev, and V.V. Kostrov, Computerized laser complex for monitoring and controlling of the precision micromachining processes, Proceedings of the International Conferences on WWW/Internet 2018 and Applied Computing 2018 (IADIS 2018). (2018) 395–399.

DOI: 10.1109/lo.2018.8435441

Google Scholar

[18] A.S. Chernikov, K.S. Khorkov, D.A. Kochuev, R.V. Chkalov, V.G. Prokoshev, and N.N. Davydov, Line-by-line fiber Bragg grating fabrication by femtosecond laser radiation, In Journal of Physics: Conference Series. 1164 (2019) 012015.

DOI: 10.1088/1742-6596/1164/1/012015

Google Scholar

[19] A.S. Chernikov, et al., Selective volumetric modification of transparent dielectric media by femtosecond laser radiation, Journal of Physics: Conference Series. 1400 (2019) 066030.

DOI: 10.1088/1742-6596/1400/6/066030

Google Scholar

[20] A.S. Chernikov, et al., Fiber Bragg grating fabrication by femtosecond laser radiation, EPJ Web of Conferences. 220 (2019) 03007.

DOI: 10.1051/epjconf/201922003007

Google Scholar