[1]
D. Tan, K.N. Sharafudeen, Y. Yue, and J. Qiu, Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications, Progress in Materials Science. 76 (2016) 154-228.
DOI: 10.1016/j.pmatsci.2015.09.002
Google Scholar
[2]
V.V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Lindeet, Multiphoton ionization in dielectrics: comparison of circular and linear polarization, Physical review letters. 97 (2006) 237403.
DOI: 10.1103/physrevlett.97.237403
Google Scholar
[3]
I. Mirza, N.M. Bulgakova, et. al., Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown, Scientific reports. 6 (2016) 39133.
DOI: 10.1038/srep39133
Google Scholar
[4]
N.M. Bulgakova, et al., Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?, Journal of Applied Physics. 118 (2015) 233108.
DOI: 10.1063/1.4937896
Google Scholar
[5]
P. Anderson, et. al., Glass: A new media for a new era?, 10th Workshop on Hot Topics in Storage and File Systems (HotStorage 18). (2018).
Google Scholar
[6]
S.A. Vasil'ev, O.I. Medvedkov, I.G. Korolev, A.S. Bozhkov, A.S. Kerkov, and E.M. Dianov, Fiber gratings and their application, Quantum Electronics. 35 (2005) 1085-1103.
DOI: 10.1070/qe2005v035n12abeh013041
Google Scholar
[7]
A.V. Dostovalov, A. A. Wolf, and S. A. Babin, Long period fibre grating writing with a slit-apertured femtosecond laser beam, Quantum Electronics. 45 (2015) 235-239.
DOI: 10.1070/qe2015v045n03abeh015647
Google Scholar
[8]
E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.H. Her, E. Mazur, and J.P. Callan, Three-dimensional optical storage inside transparent materials, Optical Letter. 21 (1996) 2023-2025.
DOI: 10.1364/ol.21.002023
Google Scholar
[9]
J. Qiu, K. Miura, and K. Hirao, Three-Dimensional Optical Memory Using Glasses as a Recording Medium through a Multi-Photon Absorption Process, Jpn. J. Appl. Phys. 37 (1998) 103-106.
DOI: 10.1143/jjap.37.2263
Google Scholar
[10]
Y. Sikorski, A.A. Said, P. Bado, R. Maynard, C. Florea, and K.A. Winick, Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses, Electronics Letters. 36 (2000) 226-227.
DOI: 10.1049/el:20000172
Google Scholar
[11]
J. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mutsuyu, and K. Hirao, Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions, Appl. Phys. Lett. 73 (1998) 1763-1765.
DOI: 10.1063/1.122274
Google Scholar
[12]
Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, Three-Dimensional Microscopic Crystallization in Photosensitive Glass by Femtosecond Laser Pulses at Nonresonant Wavelength, Jpn. J. Appl. Phys. 37 (1998) 94-96.
DOI: 10.1143/jjap.37.l94
Google Scholar
[13]
M. Will, S. Nolte, B.N. Chichkov, and A. Tunnermann, Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses, Appl. Opt. 41 (2002) 4360-4364.
DOI: 10.1364/ao.41.004360
Google Scholar
[14]
D.N. Fittinghoff, C.B. Schaffer, E. Mazur, and J.A. Squier, Time-decorrelated multifocal micromachining and trapping, J. Sel. Top. Quantum Electron. 7 (2001) 559-566.
DOI: 10.1109/2944.974227
Google Scholar
[15]
K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator, Opt. Lett. 26 (2001) 1516-1518.
DOI: 10.1364/ol.26.001516
Google Scholar
[16]
Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses, Electronics Letters. 36 (2000) 226-227.
DOI: 10.1049/el:20000172
Google Scholar
[17]
R.V. Chkalov, K.S. Khorkov, D.A. Kochuev, N.N. Davydov, N.N. Davydov, V.G. Prokoshev, and V.V. Kostrov, Computerized laser complex for monitoring and controlling of the precision micromachining processes, Proceedings of the International Conferences on WWW/Internet 2018 and Applied Computing 2018 (IADIS 2018). (2018) 395–399.
DOI: 10.1109/lo.2018.8435441
Google Scholar
[18]
A.S. Chernikov, K.S. Khorkov, D.A. Kochuev, R.V. Chkalov, V.G. Prokoshev, and N.N. Davydov, Line-by-line fiber Bragg grating fabrication by femtosecond laser radiation, In Journal of Physics: Conference Series. 1164 (2019) 012015.
DOI: 10.1088/1742-6596/1164/1/012015
Google Scholar
[19]
A.S. Chernikov, et al., Selective volumetric modification of transparent dielectric media by femtosecond laser radiation, Journal of Physics: Conference Series. 1400 (2019) 066030.
DOI: 10.1088/1742-6596/1400/6/066030
Google Scholar
[20]
A.S. Chernikov, et al., Fiber Bragg grating fabrication by femtosecond laser radiation, EPJ Web of Conferences. 220 (2019) 03007.
DOI: 10.1051/epjconf/201922003007
Google Scholar