Scanning Tunneling Microscopy Observation of WSe2 Surface

Article Preview

Abstract:

The surface structure of the WSe2 were studied using scanning tunneling microscopy. Exfoliation method in an ultra-high-vacuum chamber method is used to obtain a clean surface of WSe2 samples with atomically smooth terraces and multi-layer steps. Atomic-resolution images revealed two types of atomic defects of surface or near surface. These defects have been identified as the defects in the tungsten atom layer just below the topmost selenium layer.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 323)

Pages:

140-145

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. (2013), 5, 263–75.

DOI: 10.1038/nchem.1589

Google Scholar

[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K. Two dimensional atomic crystals, Proc. Natl Acad. Sci. USA. (2005), 102, 10451–3.

DOI: 10.1073/pnas.0502848102

Google Scholar

[3] Cao X, Tan C, Zhang X, Zhao W and Zhang H. Solution processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion, Adv.Mater.(2016), 28, 6167–96.

DOI: 10.1002/adma.201504833

Google Scholar

[4] Xu K, Yin L, Huang Y, Shifa T A, Chu J, Wang F, Cheng R, Wang Z and He J. Synthesis, properties and applications of 2D layered MIIIXVI (M = Ga, In; X = S, Se, Te) materials, Nanoscale, (2016), 8, 16802–18.

DOI: 10.1039/c6nr05976g

Google Scholar

[5] Wang F, Shifa T A, Zhan X, Huang Y, Liu K, Cheng Z, Jiang C and He J. Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting, Nanoscale, (2015), 7, 19764–88.

DOI: 10.1039/c5nr06718a

Google Scholar

[6] Deshpande, M. P.; Solanki, G. K.; Agarwal, M. K. Optical Band Gap in Tungsten Diselenide Single Crystals Intercalated by Indium, Mater. Lett. (2000), 43, 66−72.

DOI: 10.1016/s0167-577x(99)00232-3

Google Scholar

[7] Anedda, A.; Fortin, E.; Raga, F. Optical Spectra in WSe2, Can. J. Phys}, (1979), 57, 368−374.

DOI: 10.1139/p79-048

Google Scholar

[8] Lin, Y.-C. et al. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene, Nano Lett. (bf 2014), 14, 6936−6941.

Google Scholar

[9] Addou, R.; Colombo, L.; Wallace, R. M. Surface Defects on Natural MoS2, ACS Appl. Mater. Interfaces, (2015), 7, 11921−11929.

DOI: 10.1021/acsami.5b01778

Google Scholar

[10] Mattheiss, L. Band Structures of Transition-Metal-Dichalcogenide Layer Compounds, Phys. Rev. B, (1973), 8, 3719.

DOI: 10.1103/physrevb.8.3719

Google Scholar

[11] Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides, Nat. Nanotechnol. (2012), 7, 699–712.

DOI: 10.1038/nnano.2012.193

Google Scholar

[12] Brixner, L. H. Preparation and Properties of the Single Crystalline AB2-type Selenides and Tellurides of Niobium, Tantalum, Molybdenum and Tungsten, J. Inorg. Nucl. Chem. (1962), 24, 257.

DOI: 10.1016/0022-1902(62)80178-x

Google Scholar

[13] Glemser, O.; Sauer, H.; König, P. The Sulfides and Selenides of Tungsten, Z. Anorg. Chem. (1948), 257, 241−246.

Google Scholar

[14] Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping, Phys. Rev. Lett. (2012), 109, 035503.

DOI: 10.1103/physrevlett.109.035503

Google Scholar

[15] Rasool, H. I.; Ophus, C.; Zettl, A. Atomic Defects in Two Dimensional Materials, Adv. Mater. 2015, 27, 5771−5777.

DOI: 10.1002/adma.201500231

Google Scholar

[16] Chen, Y.; Huang, S.; Ji, X.; Adepalli, K.; Yin, K.; Ling, X.; Wang, X.; Xue, J.; Dresselhaus, M.; Kong, J.; Yildiz, B. Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering, ACS Nano, (2018), 12, 2569−2579.

DOI: 10.1021/acsnano.7b08418

Google Scholar

[17] Han, Y.; Wu, Z. F.; Xu, S. G.; Chen, X. L.; Wang, L.; Wang, Y.; Xiong, W.; Han, T. Y.; Ye, W. G.; Lin, J. X. Z.; Cai, Y.; Ho, K. M.; He, Y. H.; Su, D. S.; Wang, N. Probing Defect-Induced Midgap States in MoS2 Through Graphene-MoS2 Heterostructures, Adv. Mater. Interfaces, (2015), 2, 1500064.

DOI: 10.1002/admi.201500064

Google Scholar

[18] Li, W.-F.; Fang, C.; van Huis, M. A. Strong Spin-orbit Splitting and Magnetism of Point Defect States in Monolayer WS2, Phys. Rev.B: Condens. Matter Mater. Phys. (2016), 94, 195425.

DOI: 10.1103/physrevb.94.195425

Google Scholar

[19] Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q.; Long, G.; Shi, Y.; Sun, L.T.; Wang, J. L.; Wang, X. R. Hopping Transport Through Defect induced Localized States in Molybdenum Disulphide, Nat. Commun. (2013), 4, 2642.

DOI: 10.1038/ncomms3642

Google Scholar

[20] He, Y.-M.; Clark, G.; Schaibley, R.; He, Y.; Chen, C.; Wei, Y.-J.; Ding, X.; Zhang, Q.; Yao, W.; Xu, X.; Lu, C.-Y.; Pan, J.-W. Single Quantum Emitters in Monolayer Semiconductors, Nat. Nanotechnol. (2015), 10, 497−502.

DOI: 10.1038/nnano.2015.75

Google Scholar

[21] Koperski, M.; Nogajewski, K.; Arora, A.; Cherkez, V.; Mallet, P.; Veuillen, J. Y.; Marcus, J.; Kossacki, P.; Potemski, M. Single Photon Emitters in Exfoliated WSe2 structures, Nat. Nanotechnol. (2015), 10, 503−506.

DOI: 10.1038/nnano.2015.67

Google Scholar

[22] Antal A. Koós.; Péter Vancsó.; Márton Szendrő.; Gergely Dobrik.; David Antognini Silva.; Zakhar I. Popov.; Pavel B. Sorokin.; Luc Henrard.; Chanyong Hwang.; László P. Biró.; Levente Tapasztó. Influence of Native Defects on the Electronic and Magnetic Properties of CVD Grown MoSe2 Single Layers, The Journal of Physical Chemistry C (2019), 123, 24855-24864.

DOI: 10.1021/acs.jpcc.9b05921

Google Scholar

[23] Zhang, Ch.; Wang, C.; Yang, F.; Huang, J. K.; Li, L. J.; Yao, W.; Ji, W.; Shih, Ch. K. Engineering Point-Defect States in Monolayer WSe2, ACS Nano, (2019), 13, 1595−1602.

DOI: 10.1021/acsnano.8b07595

Google Scholar

[24] Sommerhalter, Ch.; Matthes, Th. W.; Boneberg, J.; Lux-Steiner, M. Ch.; Leiderer, P. Investigation of Acceptors in p-type WS2 by Standard and Photo-Assisted Scanning Tunneling Microscopy/Spectroscopy, Appl. Surf. Sci. (1999), 144−145, 564−569.

DOI: 10.1016/s0169-4332(98)00866-6

Google Scholar

[25] Klein, A.; Dolatzoglou, P.; Lux-Steiner, M.; Bucher, E. Influence of Material Synthesis and Doping on the Transport Properties of WSe2 Single Crystals Grown by Selenium Transport, Sol. Energy Mater. Sol. Cells, (1997), 46, 175−186.

DOI: 10.1016/s0927-0248(96)00093-1

Google Scholar

[26] Matthes, Th. W.; Sommerhalter, Ch.; Rettenberger, A.; Bruker, P.; Boneberg, J.; Lux-Steiner, M. C.; Leiderer, P. Imaging of Dopants in Surface and Sub-Surface Layers of the Transition Metal Dichalcogenides WS2 and WSe2 by Scanning Tunneling Microscopy, Appl. Phys. A: Mater. Sci. Process, (1998), 66, 1007−1011.

DOI: 10.1007/pl00022813

Google Scholar

[27] Addou, R.; Wallace, R. M. Surface Analysis of WSe2 Crystals: Spatial and Electronic Variability, ACS Appl. Mater. Interfaces, (2016), 8, 26400−26406.

DOI: 10.1021/acsami.6b08847

Google Scholar

[28] Gao, D.; Xia, B.; Wang, Y.; Xiao, W.; Xi, P.; Xue, D.; Ding, J. Dual-Native Vacancy Activated Basal Plane and Conductivity of MoSe2 with High-Efficiency Hydrogen Evolution Reaction, Small, (2018), 14, 1704150.

DOI: 10.1002/smll.201704150

Google Scholar

[29] Guguchia, Z.; Kerelsky, A.; Edelberg, D.; Banerjee, S.; von Rohr, F.; Scullion, D.; Augustin, M.; Scully, M.; Rhodes, D. A.; Shermadini, Z.; Luetkens, H.; Shengelaya, A.; Baines, C.; Morenzoni, E.; Amato, A.; Hone, J. C.; Khasanov, R.; Billinge, S. J. L.; Santos, E.; Pasupathy, A. N.; Uemura, Y. J. Magnetism in Semiconducting Molybdenum Dichalcogenides, Sci. Adv, (2018), 4, 3672.

DOI: 10.1126/sciadv.aat3672

Google Scholar