[1]
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. (2013), 5, 263–75.
DOI: 10.1038/nchem.1589
Google Scholar
[2]
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K. Two dimensional atomic crystals, Proc. Natl Acad. Sci. USA. (2005), 102, 10451–3.
DOI: 10.1073/pnas.0502848102
Google Scholar
[3]
Cao X, Tan C, Zhang X, Zhao W and Zhang H. Solution processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion, Adv.Mater.(2016), 28, 6167–96.
DOI: 10.1002/adma.201504833
Google Scholar
[4]
Xu K, Yin L, Huang Y, Shifa T A, Chu J, Wang F, Cheng R, Wang Z and He J. Synthesis, properties and applications of 2D layered MIIIXVI (M = Ga, In; X = S, Se, Te) materials, Nanoscale, (2016), 8, 16802–18.
DOI: 10.1039/c6nr05976g
Google Scholar
[5]
Wang F, Shifa T A, Zhan X, Huang Y, Liu K, Cheng Z, Jiang C and He J. Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting, Nanoscale, (2015), 7, 19764–88.
DOI: 10.1039/c5nr06718a
Google Scholar
[6]
Deshpande, M. P.; Solanki, G. K.; Agarwal, M. K. Optical Band Gap in Tungsten Diselenide Single Crystals Intercalated by Indium, Mater. Lett. (2000), 43, 66−72.
DOI: 10.1016/s0167-577x(99)00232-3
Google Scholar
[7]
Anedda, A.; Fortin, E.; Raga, F. Optical Spectra in WSe2, Can. J. Phys}, (1979), 57, 368−374.
DOI: 10.1139/p79-048
Google Scholar
[8]
Lin, Y.-C. et al. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene, Nano Lett. (bf 2014), 14, 6936−6941.
Google Scholar
[9]
Addou, R.; Colombo, L.; Wallace, R. M. Surface Defects on Natural MoS2, ACS Appl. Mater. Interfaces, (2015), 7, 11921−11929.
DOI: 10.1021/acsami.5b01778
Google Scholar
[10]
Mattheiss, L. Band Structures of Transition-Metal-Dichalcogenide Layer Compounds, Phys. Rev. B, (1973), 8, 3719.
DOI: 10.1103/physrevb.8.3719
Google Scholar
[11]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides, Nat. Nanotechnol. (2012), 7, 699–712.
DOI: 10.1038/nnano.2012.193
Google Scholar
[12]
Brixner, L. H. Preparation and Properties of the Single Crystalline AB2-type Selenides and Tellurides of Niobium, Tantalum, Molybdenum and Tungsten, J. Inorg. Nucl. Chem. (1962), 24, 257.
DOI: 10.1016/0022-1902(62)80178-x
Google Scholar
[13]
Glemser, O.; Sauer, H.; König, P. The Sulfides and Selenides of Tungsten, Z. Anorg. Chem. (1948), 257, 241−246.
Google Scholar
[14]
Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping, Phys. Rev. Lett. (2012), 109, 035503.
DOI: 10.1103/physrevlett.109.035503
Google Scholar
[15]
Rasool, H. I.; Ophus, C.; Zettl, A. Atomic Defects in Two Dimensional Materials, Adv. Mater. 2015, 27, 5771−5777.
DOI: 10.1002/adma.201500231
Google Scholar
[16]
Chen, Y.; Huang, S.; Ji, X.; Adepalli, K.; Yin, K.; Ling, X.; Wang, X.; Xue, J.; Dresselhaus, M.; Kong, J.; Yildiz, B. Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering, ACS Nano, (2018), 12, 2569−2579.
DOI: 10.1021/acsnano.7b08418
Google Scholar
[17]
Han, Y.; Wu, Z. F.; Xu, S. G.; Chen, X. L.; Wang, L.; Wang, Y.; Xiong, W.; Han, T. Y.; Ye, W. G.; Lin, J. X. Z.; Cai, Y.; Ho, K. M.; He, Y. H.; Su, D. S.; Wang, N. Probing Defect-Induced Midgap States in MoS2 Through Graphene-MoS2 Heterostructures, Adv. Mater. Interfaces, (2015), 2, 1500064.
DOI: 10.1002/admi.201500064
Google Scholar
[18]
Li, W.-F.; Fang, C.; van Huis, M. A. Strong Spin-orbit Splitting and Magnetism of Point Defect States in Monolayer WS2, Phys. Rev.B: Condens. Matter Mater. Phys. (2016), 94, 195425.
DOI: 10.1103/physrevb.94.195425
Google Scholar
[19]
Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q.; Long, G.; Shi, Y.; Sun, L.T.; Wang, J. L.; Wang, X. R. Hopping Transport Through Defect induced Localized States in Molybdenum Disulphide, Nat. Commun. (2013), 4, 2642.
DOI: 10.1038/ncomms3642
Google Scholar
[20]
He, Y.-M.; Clark, G.; Schaibley, R.; He, Y.; Chen, C.; Wei, Y.-J.; Ding, X.; Zhang, Q.; Yao, W.; Xu, X.; Lu, C.-Y.; Pan, J.-W. Single Quantum Emitters in Monolayer Semiconductors, Nat. Nanotechnol. (2015), 10, 497−502.
DOI: 10.1038/nnano.2015.75
Google Scholar
[21]
Koperski, M.; Nogajewski, K.; Arora, A.; Cherkez, V.; Mallet, P.; Veuillen, J. Y.; Marcus, J.; Kossacki, P.; Potemski, M. Single Photon Emitters in Exfoliated WSe2 structures, Nat. Nanotechnol. (2015), 10, 503−506.
DOI: 10.1038/nnano.2015.67
Google Scholar
[22]
Antal A. Koós.; Péter Vancsó.; Márton Szendrő.; Gergely Dobrik.; David Antognini Silva.; Zakhar I. Popov.; Pavel B. Sorokin.; Luc Henrard.; Chanyong Hwang.; László P. Biró.; Levente Tapasztó. Influence of Native Defects on the Electronic and Magnetic Properties of CVD Grown MoSe2 Single Layers, The Journal of Physical Chemistry C (2019), 123, 24855-24864.
DOI: 10.1021/acs.jpcc.9b05921
Google Scholar
[23]
Zhang, Ch.; Wang, C.; Yang, F.; Huang, J. K.; Li, L. J.; Yao, W.; Ji, W.; Shih, Ch. K. Engineering Point-Defect States in Monolayer WSe2, ACS Nano, (2019), 13, 1595−1602.
DOI: 10.1021/acsnano.8b07595
Google Scholar
[24]
Sommerhalter, Ch.; Matthes, Th. W.; Boneberg, J.; Lux-Steiner, M. Ch.; Leiderer, P. Investigation of Acceptors in p-type WS2 by Standard and Photo-Assisted Scanning Tunneling Microscopy/Spectroscopy, Appl. Surf. Sci. (1999), 144−145, 564−569.
DOI: 10.1016/s0169-4332(98)00866-6
Google Scholar
[25]
Klein, A.; Dolatzoglou, P.; Lux-Steiner, M.; Bucher, E. Influence of Material Synthesis and Doping on the Transport Properties of WSe2 Single Crystals Grown by Selenium Transport, Sol. Energy Mater. Sol. Cells, (1997), 46, 175−186.
DOI: 10.1016/s0927-0248(96)00093-1
Google Scholar
[26]
Matthes, Th. W.; Sommerhalter, Ch.; Rettenberger, A.; Bruker, P.; Boneberg, J.; Lux-Steiner, M. C.; Leiderer, P. Imaging of Dopants in Surface and Sub-Surface Layers of the Transition Metal Dichalcogenides WS2 and WSe2 by Scanning Tunneling Microscopy, Appl. Phys. A: Mater. Sci. Process, (1998), 66, 1007−1011.
DOI: 10.1007/pl00022813
Google Scholar
[27]
Addou, R.; Wallace, R. M. Surface Analysis of WSe2 Crystals: Spatial and Electronic Variability, ACS Appl. Mater. Interfaces, (2016), 8, 26400−26406.
DOI: 10.1021/acsami.6b08847
Google Scholar
[28]
Gao, D.; Xia, B.; Wang, Y.; Xiao, W.; Xi, P.; Xue, D.; Ding, J. Dual-Native Vacancy Activated Basal Plane and Conductivity of MoSe2 with High-Efficiency Hydrogen Evolution Reaction, Small, (2018), 14, 1704150.
DOI: 10.1002/smll.201704150
Google Scholar
[29]
Guguchia, Z.; Kerelsky, A.; Edelberg, D.; Banerjee, S.; von Rohr, F.; Scullion, D.; Augustin, M.; Scully, M.; Rhodes, D. A.; Shermadini, Z.; Luetkens, H.; Shengelaya, A.; Baines, C.; Morenzoni, E.; Amato, A.; Hone, J. C.; Khasanov, R.; Billinge, S. J. L.; Santos, E.; Pasupathy, A. N.; Uemura, Y. J. Magnetism in Semiconducting Molybdenum Dichalcogenides, Sci. Adv, (2018), 4, 3672.
DOI: 10.1126/sciadv.aat3672
Google Scholar