Evaluation of the Influence of Ferrite Magnetic Nanoparticle for Cancer Cell

Article Preview

Abstract:

Magnetic nanoparticles for thermotherapy must be biocompatible and possess high thermal efficiency as heating elements. The biocompatibility of Mg0.8Ni0.2Fe2O4 nanoparticles was studied using a cytotoxicity colony formation assay and a cell viability assay. HeLa cells exhibited cytotoxic effects when exposed to three different concentrations of 150 μg/ml, 100 μg/ml, and 50 μg/ml nanoparticles. Therefore, concentrations of 50 μg/ml showed the lowest cytotoxic activity and the lowest toxicity to living cells. In vitro cytotoxicity of samples was then investigated by two methods, colony formation assay and cell viability assay. The Hela inhibited cell growth as 16.8% during heating by magnetic field generators.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 323)

Pages:

146-151

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ouvinha de Oliveira R, de Santa Maria LC, Barratt G., Ann Pharm Fr (2014), 72, 303–16.

Google Scholar

[2] S. A. RASHDAN AND L. J. HAZEEM, Arab Journal of Basic and Applied Sciences, (2020).

Google Scholar

[3] S. Kanagesan, M. Hashim, et al., Journal of Nanomaterials, (2013), 1-8.

Google Scholar

[4] Ahamed, M., Akhtar, M. J., Alhadlaq, H. A., Khan, M. A., & Alrokayan, S. A. (2015), Chemosphere, 135, 278–288.

Google Scholar

[5] Ahamed, M., Akhtar, M. J., Alhadlaq, H. A., & Alshamsan, A. (2016), Colloids and Surfaces B: Biointerfaces, 142, 46–54.

DOI: 10.1016/j.colsurfb.2016.02.043

Google Scholar

[6] Alhadlaq, H. A., Akhtar, M. J., & Ahamed, M. (2015), Cell & Bioscience, 5, 55.

Google Scholar

[7] Kim, D. H., Kim, K. N., Kim, K. M., Shim, I. B., & Lee, Y. K. (2007), NSTI-Nanotech, 2, 748–751.

Google Scholar

[8] Tomitaka, A., Hirukawa, A., Yamada, T., Morishita, S., Takemura, Y., 2009, J. Magn. Magn. Mater. 321, 1482–1484.

Google Scholar

[9] Zhao Q, Wang L, Cheng R, et al., Theranostics, (2012), 2(1), 113–121.

Google Scholar

[10] B. Sahoo, K. S. P. Devi, S. Dutta, T. K. Maiti, P. Pramanik, D. Dhara, J. Colloid Interface Sci. (2014), 431, 31.

Google Scholar

[11] J. Jimenez, L.R. Negrete, F. Abdullaev, et al., Exp. Toxicol. Pathol. 60 (2008).

Google Scholar

[12] Peppino Mirabelli, Luigi Coppola, Marco Salvatore, Cancers (Basel), (2019) Aug 11(8): 1098.

Google Scholar

[13] I. Khishigdemberel, E. Uyanga, et al., Solid State Sciences 109 (2020) 106400.

Google Scholar

[14] Stayton I, Winiarz J, Shannon K, et al. Study of uptake and loss of silica nanoparticles in living human lung epithelial cells at single cell level. Anal Bioanal Chem 2009; 394: 1595–1608.

DOI: 10.1007/s00216-009-2839-0

Google Scholar

[15] T. Saga, H. Sakahara, Y. Nakamoto, et al., Eur. J. Cancer 37 (2001) 1429.

Google Scholar

[16] N. Siva Kumar, S.R.P. Gnanakan, K. Karthikeyan, S. Amaresh, W.S. Yoon, G.J. Park, Y.S. Lee, J. Alloys Compd. 509, 7038 (2011).

Google Scholar

[17] F. Novelo, R. Valenzuela, Mater. Res. Bull. 30, 335 (1995).

Google Scholar

[18] G. F. Yang, X. H. Li, Z. Zhao, W. B. Wang, Acta. Pharmacol. Sin. 30, (2009) 1688.

Google Scholar