First-Principles Study of Carrier-Mediated and Vacancy-Induced Ferromagnetism in Molybdenum Disulfide Monolayer

Article Preview

Abstract:

We have investigated the magnetic properties of semiconducting molybdenum disulfide (MoS2) monolayer (ML) using the plane wave self-consistent field (PWscf) method within the framework of density functional theory (DFT). The pristine semiconducting bulk MoS2 is nonmagnetic (NM), due to the spin pairing of two electrons. We have indicated that the carrier-mediated ferromagnetism is available on the MoS2 ML as both the hole and electron carriers. The ordinary neutral S (VS0) vacancy creates the localized vacancy defect level and this level does not create the ferromagnetic (FM) state due to the spin pairing of two electrons by three Mo dangling bonds. While we have shown that the FM state is possible to create the FM state, due to the additional hole and electron carriers on the valency band and localized vacancy defect level by positively and negatively charged S (VS1+ and VS1- ) and positively charged Mo (VMo1+) vacancies.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 323)

Pages:

166-174

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Ohno, Making nonmagnetic semiconductors ferromagnetic, Science, 281(1998) 951-956.

DOI: 10.1126/science.281.5379.951

Google Scholar

[2] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science, 287 (2000) 1019-1022.

DOI: 10.1126/science.287.5455.1019

Google Scholar

[3] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Moilnar, M. L. Roukes, A. Y. Chtchelkavova, D. M. Treger, Spintronics: A spin-based electronics vision for the future, Science 294 (2001) 1488-1495.

DOI: 10.1126/science.1065389

Google Scholar

[4] J. A. Wilson, A. D. Yoffe, The transition metal dichalcogenides: discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys. 18 (1963) 193-335.

DOI: 10.1080/00018736900101307

Google Scholar

[5] T. Boker, R. Severin, A. Muller, C. Janowitz, R. Manzke, D. Vob, P. Kruger, A. Mazur, J. Pollmann, Band structure of MoS2, MoSe2 and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations, Phys. Rev. B 64 (2001) 235305.

Google Scholar

[6] R. Huisman, R. De. Jonge, C. Haas, F. Jellinek, Trigonal-prismatic coordination in solid compounds of transition metals, J. Sol. Stat. Chem. 3 (1971) 56-66.

DOI: 10.1016/0022-4596(71)90007-7

Google Scholar

[7] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102 (2005) 10451-10453.

DOI: 10.1073/pnas.0502848102

Google Scholar

[8] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chin, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10 (2010) 1271-1275.

DOI: 10.1021/nl903868w

Google Scholar

[9] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105 (2010) 136805.

DOI: 10.1103/physrevlett.105.136805

Google Scholar

[10] J. He, K. Wu, R. Sa, Q. Li, Y. Wei, Magnetic properties of nonmetal atoms absorbed MoS2 monolayers, Appl. Phys. Lett. 96 (2010) 082504.

DOI: 10.1063/1.3318254

Google Scholar

[11] C. Ataca, S. Ciraci, Functionalization of single-layer MoS2 honeycomb structures, J. Phys. Chem. C 115 (2011) 13303-13311.

DOI: 10.1021/jp2000442

Google Scholar

[12] Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, B. Huang, Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2, and WS2 monolayers, Phys. Chem. Chem. Phys. 13 (2011) 15546-15553.

DOI: 10.1039/c1cp21159e

Google Scholar

[13] Y. C. Cheng, Z. Y. Zhu, W. B. Mi, Z. B. Guo, U. Schwingenschlogl, Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems, Phys. Rev. B 87 (2013) 100401(R).

Google Scholar

[14] J. Zhang, J. M. Soon, K. P. Loh, J. Yin, J. Ding, M. B. Sullivian, P. Wu, Magnetic molybdenum disulfide nanosheet films, Nano Lett. 7 (2007) 2370-2376.

DOI: 10.1021/nl071016r

Google Scholar

[15] Y. Li, Z. Zhou, S. Zhang, Z. Chen, MoS2 Nanoribbons: High stability and unusual electronic and magnetic properties, J. Am. Chem. Soc. 130 (2008) 16739-16744.

DOI: 10.1021/ja805545x

Google Scholar

[16] A. R. Botello-Mendez, F. Lopez-Urias, M. Terrones, H. Terrones, Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons, Nanotechnology, 20 (2009) 325703.

DOI: 10.1088/0957-4484/20/32/325703

Google Scholar

[17] R. Shidpour, M. Manteghian, A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy, Nanoscale 2 (2010) 1429-1435.

DOI: 10.1039/b9nr00368a

Google Scholar

[18] H. Pan, Y. Zhang, Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons, J. Mater. Chem. 22 (2012) 7280-7290.

DOI: 10.1039/c2jm15906f

Google Scholar

[19] S. Mathew, K. Gopinadhan, T. K. Chan, X. J. Yu, D. Zhan, L. Cao, A. Rusydi, M. B. H. Breese, S. Dhar, Z. X. Shen, T. Venkatesan, J. T. L. Thong, Magnetism in MoS2 induced by proton irradiation, Appl. Phys. Lett. 101 (2012) 102103.

DOI: 10.1063/1.4750237

Google Scholar

[20] S. Tongay, S. S. Varnoosfaderani, B. R. Appleton, J. Wu, A. F. Hebard, Magnetic properties of MoS2: Existence of ferromagnetism, Appl. Phys. Lett. 101 (2012) 123105.

DOI: 10.1063/1.4753797

Google Scholar

[21] S. W. Han, Y. Hwang, S. Kim, M. G. Park, S. Ryu, J. S. Park, D. Yoo, S. Yoon, S. C. Hong, K. S. Kim, Y. S. Park, Controlling ferromagnetic easy axis in a layered MoS2 single crystal, Phys. Rev. Lett. 110 (2013) 247201.

DOI: 10.1103/physrevlett.110.247201

Google Scholar

[22] D. Gao, M. Si, J. Li, J. Zhang, Z. Zhang, Z. Yang, D. Xue, Ferromagnetism in freestanding MoS2 nanosheets, Nanoscale Res. Lett. 8 (2013) 129.

DOI: 10.1186/1556-276x-8-129

Google Scholar

[23] L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun, S. Wei, Vacancy-induced ferromagnetism of MoS2 Nanosheets, J. Am. Chem. Soc. 137 (2015) 2622-2627.

DOI: 10.1021/ja5120908

Google Scholar

[24] X. Han, M. Benkraouda, N. Amrane, S vacancy enhanced ferromagnetism in Mn-doped monolayer MoS2: A hybrid functional study, Chem. Phys. 541 (2021) 111043.

DOI: 10.1016/j.chemphys.2020.111043

Google Scholar

[25] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[26] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) B864- 871.

DOI: 10.1103/physrev.136.b864

Google Scholar

[27] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133-1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[28] P. Gianmozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazaaoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari R. M. Wentzcovich, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter. 21 (2009) 395502.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[29] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. -Y. Ko, A. Kokalj, E. Kucukbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. -V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Ponce, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modeling with QUANTUM ESPRESSO, J. Phys.: Condens. Matter. 29 (2017) 465901.

DOI: 10.1088/1361-648x/aa8f79

Google Scholar

[30] P. Giannozzi, O. Baseggio, P. Bonfa, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. F. Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, S. Baron, QUANTUM ESPRESSO toward the exascale, J. Chem. Phys. 152 (2020) 154105.

DOI: 10.1063/5.0005082

Google Scholar

[31] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev.B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[32] P. E. Blochl, O. Jepsen, O. K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B 49 (1994) 16223-16233.

DOI: 10.1103/physrevb.49.16223

Google Scholar

[33] G. Luo, Z. -Z. Zhang, H. -O. Li, X. -X. Song, G. -W. Deng, G. Cao, M. Xiao, G. -P. Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12 (2017) 128502.

DOI: 10.1007/s11467-017-0652-3

Google Scholar

[34] E. -A. Choi, W. -J. Lee, K. J. Chang, Enhanced electron-mediated ferromagnetism in Co -doped ZnO nanowires, J. Appl. Phys. 108 (2010) 023904.

DOI: 10.1063/1.3463412

Google Scholar

[35] N. Tsogbadrakh, E. -A. Choi, W. -J. Lee, K. J. Chang, Hole doping effect on ferromagnetism in Mn-doped ZnO nanowires, Curr. Appl. Phys. 11 (2011) 236-240.

DOI: 10.1016/j.cap.2010.07.014

Google Scholar

[36] H. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A. V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping, Phys. Rev. Lett. 109 (2012) 035503.

DOI: 10.1103/physrevlett.109.035503

Google Scholar

[37] Y. C. Cheng, Z. Y. Zhu, W. B. Mi, Z. B. Guo, U. Schwingenschlogl, Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems, Phys. Rev. B 87 (2013) 100401(R).

Google Scholar