[1]
G. Ohno, Making nonmagnetic semiconductors ferromagnetic, Science, 281(1998) 951-956.
DOI: 10.1126/science.281.5379.951
Google Scholar
[2]
T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science, 287 (2000) 1019-1022.
DOI: 10.1126/science.287.5455.1019
Google Scholar
[3]
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Moilnar, M. L. Roukes, A. Y. Chtchelkavova, D. M. Treger, Spintronics: A spin-based electronics vision for the future, Science 294 (2001) 1488-1495.
DOI: 10.1126/science.1065389
Google Scholar
[4]
J. A. Wilson, A. D. Yoffe, The transition metal dichalcogenides: discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys. 18 (1963) 193-335.
DOI: 10.1080/00018736900101307
Google Scholar
[5]
T. Boker, R. Severin, A. Muller, C. Janowitz, R. Manzke, D. Vob, P. Kruger, A. Mazur, J. Pollmann, Band structure of MoS2, MoSe2 and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations, Phys. Rev. B 64 (2001) 235305.
Google Scholar
[6]
R. Huisman, R. De. Jonge, C. Haas, F. Jellinek, Trigonal-prismatic coordination in solid compounds of transition metals, J. Sol. Stat. Chem. 3 (1971) 56-66.
DOI: 10.1016/0022-4596(71)90007-7
Google Scholar
[7]
K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102 (2005) 10451-10453.
DOI: 10.1073/pnas.0502848102
Google Scholar
[8]
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chin, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10 (2010) 1271-1275.
DOI: 10.1021/nl903868w
Google Scholar
[9]
K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105 (2010) 136805.
DOI: 10.1103/physrevlett.105.136805
Google Scholar
[10]
J. He, K. Wu, R. Sa, Q. Li, Y. Wei, Magnetic properties of nonmetal atoms absorbed MoS2 monolayers, Appl. Phys. Lett. 96 (2010) 082504.
DOI: 10.1063/1.3318254
Google Scholar
[11]
C. Ataca, S. Ciraci, Functionalization of single-layer MoS2 honeycomb structures, J. Phys. Chem. C 115 (2011) 13303-13311.
DOI: 10.1021/jp2000442
Google Scholar
[12]
Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, B. Huang, Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2, and WS2 monolayers, Phys. Chem. Chem. Phys. 13 (2011) 15546-15553.
DOI: 10.1039/c1cp21159e
Google Scholar
[13]
Y. C. Cheng, Z. Y. Zhu, W. B. Mi, Z. B. Guo, U. Schwingenschlogl, Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems, Phys. Rev. B 87 (2013) 100401(R).
Google Scholar
[14]
J. Zhang, J. M. Soon, K. P. Loh, J. Yin, J. Ding, M. B. Sullivian, P. Wu, Magnetic molybdenum disulfide nanosheet films, Nano Lett. 7 (2007) 2370-2376.
DOI: 10.1021/nl071016r
Google Scholar
[15]
Y. Li, Z. Zhou, S. Zhang, Z. Chen, MoS2 Nanoribbons: High stability and unusual electronic and magnetic properties, J. Am. Chem. Soc. 130 (2008) 16739-16744.
DOI: 10.1021/ja805545x
Google Scholar
[16]
A. R. Botello-Mendez, F. Lopez-Urias, M. Terrones, H. Terrones, Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons, Nanotechnology, 20 (2009) 325703.
DOI: 10.1088/0957-4484/20/32/325703
Google Scholar
[17]
R. Shidpour, M. Manteghian, A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy, Nanoscale 2 (2010) 1429-1435.
DOI: 10.1039/b9nr00368a
Google Scholar
[18]
H. Pan, Y. Zhang, Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons, J. Mater. Chem. 22 (2012) 7280-7290.
DOI: 10.1039/c2jm15906f
Google Scholar
[19]
S. Mathew, K. Gopinadhan, T. K. Chan, X. J. Yu, D. Zhan, L. Cao, A. Rusydi, M. B. H. Breese, S. Dhar, Z. X. Shen, T. Venkatesan, J. T. L. Thong, Magnetism in MoS2 induced by proton irradiation, Appl. Phys. Lett. 101 (2012) 102103.
DOI: 10.1063/1.4750237
Google Scholar
[20]
S. Tongay, S. S. Varnoosfaderani, B. R. Appleton, J. Wu, A. F. Hebard, Magnetic properties of MoS2: Existence of ferromagnetism, Appl. Phys. Lett. 101 (2012) 123105.
DOI: 10.1063/1.4753797
Google Scholar
[21]
S. W. Han, Y. Hwang, S. Kim, M. G. Park, S. Ryu, J. S. Park, D. Yoo, S. Yoon, S. C. Hong, K. S. Kim, Y. S. Park, Controlling ferromagnetic easy axis in a layered MoS2 single crystal, Phys. Rev. Lett. 110 (2013) 247201.
DOI: 10.1103/physrevlett.110.247201
Google Scholar
[22]
D. Gao, M. Si, J. Li, J. Zhang, Z. Zhang, Z. Yang, D. Xue, Ferromagnetism in freestanding MoS2 nanosheets, Nanoscale Res. Lett. 8 (2013) 129.
DOI: 10.1186/1556-276x-8-129
Google Scholar
[23]
L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun, S. Wei, Vacancy-induced ferromagnetism of MoS2 Nanosheets, J. Am. Chem. Soc. 137 (2015) 2622-2627.
DOI: 10.1021/ja5120908
Google Scholar
[24]
X. Han, M. Benkraouda, N. Amrane, S vacancy enhanced ferromagnetism in Mn-doped monolayer MoS2: A hybrid functional study, Chem. Phys. 541 (2021) 111043.
DOI: 10.1016/j.chemphys.2020.111043
Google Scholar
[25]
J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.
DOI: 10.1103/physrevb.45.13244
Google Scholar
[26]
P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) B864- 871.
DOI: 10.1103/physrev.136.b864
Google Scholar
[27]
W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133-1138.
DOI: 10.1103/physrev.140.a1133
Google Scholar
[28]
P. Gianmozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazaaoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari R. M. Wentzcovich, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter. 21 (2009) 395502.
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[29]
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. -Y. Ko, A. Kokalj, E. Kucukbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. -V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Ponce, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modeling with QUANTUM ESPRESSO, J. Phys.: Condens. Matter. 29 (2017) 465901.
DOI: 10.1088/1361-648x/aa8f79
Google Scholar
[30]
P. Giannozzi, O. Baseggio, P. Bonfa, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. F. Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, S. Baron, QUANTUM ESPRESSO toward the exascale, J. Chem. Phys. 152 (2020) 154105.
DOI: 10.1063/5.0005082
Google Scholar
[31]
H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev.B 13 (1976) 5188-5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[32]
P. E. Blochl, O. Jepsen, O. K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B 49 (1994) 16223-16233.
DOI: 10.1103/physrevb.49.16223
Google Scholar
[33]
G. Luo, Z. -Z. Zhang, H. -O. Li, X. -X. Song, G. -W. Deng, G. Cao, M. Xiao, G. -P. Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12 (2017) 128502.
DOI: 10.1007/s11467-017-0652-3
Google Scholar
[34]
E. -A. Choi, W. -J. Lee, K. J. Chang, Enhanced electron-mediated ferromagnetism in Co -doped ZnO nanowires, J. Appl. Phys. 108 (2010) 023904.
DOI: 10.1063/1.3463412
Google Scholar
[35]
N. Tsogbadrakh, E. -A. Choi, W. -J. Lee, K. J. Chang, Hole doping effect on ferromagnetism in Mn-doped ZnO nanowires, Curr. Appl. Phys. 11 (2011) 236-240.
DOI: 10.1016/j.cap.2010.07.014
Google Scholar
[36]
H. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A. V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping, Phys. Rev. Lett. 109 (2012) 035503.
DOI: 10.1103/physrevlett.109.035503
Google Scholar
[37]
Y. C. Cheng, Z. Y. Zhu, W. B. Mi, Z. B. Guo, U. Schwingenschlogl, Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems, Phys. Rev. B 87 (2013) 100401(R).
Google Scholar