Earth Bricks with Halloysite Nanoclay: Research and Experimentation for the Sustainability of Materials

Article Preview

Abstract:

This paper illustrates the experimentation activities on rammed earth and nanotechnologies. The experimental research was carried out with the aim of improving the performance of rammed earth bricks with clay nanotubes, creating a ‘new material’ with reduced embodied energy and low CO2 emissions into the atmosphere. Specifically, the analysed performances are related to the compressive strength that expand their area of use as a building material.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 324)

Pages:

159-165

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pacheco-Torgal, F. and Jalali, S. (2012), Earth construction: Lessons from the past for future eco- efficient construction,, in Construction and Building Materials, vol. 29, pp.512-519.

DOI: 10.1016/j.conbuildmat.2011.10.054

Google Scholar

[2] Morton, T., Stevenson, F., Taylor, B. and Smith, N. C. (2005), Low cost earth brick construction. Monitoring and evaluation, Arc, UK.

Google Scholar

[3] Shukla, A., Tiwari, G. and Sodha, M. S. (2008), Embodied energy analysis of adobe house,, in Renew Energy, vol. 34, pp.755-61.

DOI: 10.1016/j.renene.2008.04.002

Google Scholar

[4] Danso, H., Martinson, B., Ali, M. and Mant, C. (2015), Performance characteristics of enhanced soil blocks: a quantitative review,, in Building Research & Information, vol. 43, issue 2, pp.253-262.

DOI: 10.1080/09613218.2014.933293

Google Scholar

[5] Houben, H. and Guillaud, H. (1994), Earth construction: a comprehensive guide, Earth Construction Series, Intermediate Technology Publications, London.

Google Scholar

[6] Morel, J.-C., Pkla, A. and Walker, P. (2007), Compressive strength testing of compressed earth blocks,, in Construction and Building Materials, vol. 21, issue 2, pp.303-309.

DOI: 10.1016/j.conbuildmat.2005.08.021

Google Scholar

[7] Walker, P. and Stace, T. (1997), Properties of Some Cement Stabilised Compressed Earth Blocks and Mortars,, in Materials and Structures, vol. 30, pp.545-551.

DOI: 10.1007/bf02486398

Google Scholar

[8] Millogo, Y. and Morel, J.-C. (2012), Microstructural Characterization and Mechanical Properties of Cement Stabilised Adobes,, in Materials and Structures, vol. 45, issue 9, pp.1311-1318.

DOI: 10.1617/s11527-012-9833-2

Google Scholar

[9] Burroughs, S. (2006), Strength of Compacted Earth: Linking Soil Properties to Stabilizers,, in Building Research and Information, vol. 34, issue 1, pp.55-65.

DOI: 10.1080/09613210500279612

Google Scholar

[10] Millogo, Y., Hajjaji, M. and Ouedraogo, R. (2008), Microstructure and Physical Properties of Lime-Clayey Adobe Bricks,, in Construction Building Materials, vol. 22, issue 12, pp.2386-2392.

DOI: 10.1016/j.conbuildmat.2007.09.002

Google Scholar

[11] Ciancio, D., Beckett, C. T. S. and Carraro, J. A. H. (2014), Optimum lime content identification for lime-stabilised rammed earth,, in Construction and Building Materials, vol. 53, pp.59-65.

DOI: 10.1016/j.conbuildmat.2013.11.077

Google Scholar

[12] Maskell, D., Heath, A. and Walker, P. (2014a), Comparing the environmental impact of stabilisers for unfired earth construction,, in Key Engineering Materials, vol. 600, pp.132-143.

DOI: 10.4028/www.scientific.net/kem.600.132

Google Scholar

[13] Maskell, D., Heath, A. and Walker, P. (2014), Inorganic stabilisation methods for extruded earth masonry units,, in Construction Building Materials, vol. 71, pp.602-609.

DOI: 10.1016/j.conbuildmat.2014.08.094

Google Scholar

[14] James, J., Pandian, P. K., Deepika, K., Venkatesh, J. M., Manikandan, V. and Manikumaran, P. (2016), Cement Stabilized Soil Blocks Admixed with Sugarcane Bagasse Ash,, in Journal of Engineering, vol. 2016, Article ID 7940239, pp.1-9.

DOI: 10.1155/2016/7940239

Google Scholar

[15] Oti, J. E., Kinuthia, J. M. and Bai, J. (2009), Engineering properties of unfired clay masonry brics,, in Engineering Geology, vol. 107, issue 3-4, pp.130-139.

DOI: 10.1016/j.enggeo.2009.05.002

Google Scholar

[16] Scalisi, F. (2010), Nanotecnologie in Edilizia. Innovazione tecnologica e nuovi materiali per le costruzioni, Maggioli, Santarcangelo di Romagna (RN).

Google Scholar

[17] Yuan, P., Tan, D. and Annabi-Bergaya, F. (2015), Properties and applications of halloysite nanotubes: recent research advances and future prospects,, in Applied Clay Science, vol. 112-113, pp.75-93.

DOI: 10.1016/j.clay.2015.05.001

Google Scholar

[18] Farzadina, N., Ali, A., Demirboga, R. and Parvez Anwar, M. (2013), Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars,, in Cement and Concrete Research, vol. 18, pp.97-104.

DOI: 10.1016/j.cemconres.2013.03.005

Google Scholar

[19] Kamble, R. Ghag, M., Gaikawad, S. and Kumar Panda, B. (2012), Halloysite Nanotubes and Applications: A Review,, in Journal of Advanced Scientific Research, vol. 3, issue 2, pp.25-29.

Google Scholar

[20] Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., Issaabadi, Z. and Atarod, M. (eds) (2019), An Introduction to Green Nanotechnology, Series Interface Science and Technology, vol. 28, Academic Press-Elsevier, London.

DOI: 10.1016/b978-0-12-813586-0.00002-x

Google Scholar

[21] Lvov, Y. M., Shchukin, D. G., Mohwald, H. and Price, R. R. (2008), Halloysite clay nanotubes for controlled release of protective agents,, in ACS Nano, vol. 2, issue 5, pp.814-820.

DOI: 10.1021/nn800259q

Google Scholar

[22] Zhang, Y., Tang, A., Yang, H. and Ouyang, J. (2016), Applications and interfaces of halloysite nanocomposites,, in Applied Clay Science, vol. 82, issue 1, pp.8-17.

DOI: 10.1016/j.clay.2015.06.034

Google Scholar

[23] Lazzara, G., Cavallaro, G., Panchal, A., Fankhrullin, R., Stavitskaya, A., Vinokurov, V. and Lvov, Y. (2018), An assembly of organic-inorganic composites using halloysite clay nanotubes,, in Current Opinion in Colloid & Interface Science, n. 35, pp.42-50.

DOI: 10.1016/j.cocis.2018.01.002

Google Scholar

[24] Lvov, Y and Elshad, A. (2013), Functional polymer-clay nanotube composites with sustained release of chemical agents,, in Progress in Polymer Science, n. 38, pp.1690-1719.

DOI: 10.1016/j.progpolymsci.2013.05.009

Google Scholar

[25] Galán-Marín, C., Rivera-Gómez, C. and Petric, J. (2010), Clay-based composite stabilized with natural polymer and fibre,, in Construction and Building Materials, vol. 24, pp.1462-1468.

DOI: 10.1016/j.conbuildmat.2010.01.008

Google Scholar

[26] Maskell, D., Heath, A. and Walker, P. (2015), Use of Metakaolin with stabilised extruded earth masonry units,, in Construction and Building Materials, vol. 78, pp.172-180.

DOI: 10.1016/j.conbuildmat.2015.01.041

Google Scholar

[27] Maskell, D., Heath, A. and Walker, P. (2016), Appropriate structural unfired earth masonry units,, in Construction Materials, vol. 169, issue 5, pp.261-270.

DOI: 10.1680/jcoma.15.00034

Google Scholar