Mild Reaction of Highly-Oriented Collagen Fibril Arrays with Simulated Body Fluid

Article Preview

Abstract:

The highly-oriented collagen fibrils that paralleled to one (rubbing) direction were fabricated by which the collagen molecular solution was spin-coated and self-assembled on the rubbed polyimide film. Subsequently, the hydroxyapatite crystals were precipitated on the collagen fibrils by immersing into simulated body fluid. In details, the carboxyl groups on the collagen fibrils were used as a reaction field for adsorption of Ca2+ ions and promoted the formation of hydroxyapatite crystals. As a result, the hydroxyapatite crystals grew along the a-axis leading to the formation of stable interfaces between hydroxyapatite crystals and collagen fibrils. Moreover, the oriented collagen fibril arrays were more useful for the nucleation and growth of hydroxyapatite. Therefore, we successfully fabricated the highly-oriented collagen fibril arrays which were useful for the precipitation of hydroxyapatite crystals.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 324)

Pages:

166-172

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Weiner and H.D. Wagner: Annu. Rev. Mater. Sci. Vol. 28 (1998), p.271–298.

Google Scholar

[2] J.A. PETRUSKA and A.J. HODGE: Proc. Natl. Acad. Sci. Vol. 51 (1964), p.871–876.

Google Scholar

[3] J.W. Smith: Nature Vol. 219 (1968), p.157–158.

Google Scholar

[4] M. Kikuchi, S. Itoh, S. Ichinose, and K. Shinomiya: Biomaterials Vol. 22 (2001), p.1705–1711.

Google Scholar

[5] Y. Chai, M. Okuda, Y. Otsuka, K. Ohnuma, and M. Tagaya: Adv. Powder Technol. Vol. 30 (2019), p.1419–1423.

Google Scholar

[6] J.H. Bradt, M. Mertig, A. Teresiak, and W. Pompe: Chem. Mater. Vol. 11 (1999), p.2694–2701.

DOI: 10.1021/cm991002p

Google Scholar

[7] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro: J. Biomed. Mater. Res. Vol. 24 (1990), p.721–734.

DOI: 10.1002/jbm.820240607

Google Scholar

[8] Y. Chai, T. Yamaguchi, and M. Tagaya: Cryst. Growth Des. Vol. 17 (2017), p.4977–4983.

Google Scholar

[9] Y. Chai, S. Yamada, K. Kobayashi, K. Hasegawa, and M. Tagaya: Microporous Mesoporous Mater Vol. 286 (2019), p.1–8.

Google Scholar

[10] N.A.J.M. van Aerle and A.J.W. Tol: Macromolecules, Vol. 27 (1994), p.6520–6526.

Google Scholar

[11] T. Manaka, K. Taguchi, K. Ishikawa, and H. Takezoe: Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. Vol. 39 (2000), p.4910–4911.

Google Scholar

[12] H. Yu, J. Li, T. Ikeda, and T. Iyoda: Adv. Mater. Vol. 18 (2006), p.2213–2215.

Google Scholar

[13] H. Miyata and K. Kuroda: Chem. Mater. Vol. 11 (1999), p.1609–1614.

Google Scholar

[14] M. Thuanthong, N. Sirinupong, and W. Youravong: J. Sci. Food Agric. Vol. 96 (2016), p.3795–3800.

Google Scholar

[15] P. Noitup, M.T. Morrissey, and W. Garnjanagoonchorn: J. Food Biochem. Vol. 30 (2006), p.547–555.

Google Scholar

[16] T. Matsunobe, N. Nagai, R. Kamoto, Y. Nakagawa, and H. Ishida: J. Photopolym. Sci. Technol. Vol. 8 (1995), p.263–268.

Google Scholar

[17] H. Deligöz, S. Özgümüş, T. Yalçinyuva, S. Yildirim, D. Deǧer, and K. Ulutaş: Polymer Vol. 46 (2005), p.3720–3729.

DOI: 10.1016/j.polymer.2005.02.097

Google Scholar

[18] S.H. Xie, B.K. Zhu, X.Z. Wei, Z.K. Xu, and Y.Y. Xu: Compos. Part A Appl. Sci. Manuf. Vol. 36 (2005), pp.1152-1157.

Google Scholar

[19] L.L. Fernandes, C.X. Resende, D.S. Tavares, G.A. Soares, L.O. Castro, and J.M. Granjeiro: Polimeros Vol. 21 (2011), p.1–6.

Google Scholar

[20] P. Kittiphattanabawon, S. Nalinanon, S. Benjakul, and H. Kishimura: J. Chem. Vol. 2015 (2015).

Google Scholar

[21] B. De Campos Vidal and M.L.S. Mello: Micron Vol. 42 (2011), p.283–289.

Google Scholar