Processing of Cf/SiC Composites through Two-Channel Temperature-Control CVI: I, Modeling

Article Preview

Abstract:

A two-channel temperature-control CVI scheme was proposed to fabricate thicker and denser composites. The two-channel structure helps to densify a thick preform, and a precise temperature control will guarantee a low and uniform porosity distribution. Validation simulations containing hydrodynamics, mass transfer, heat transfer and pore structure evolution were first carried out. Modeling results confirm that a two-step densification based on the new scheme can work well: At step I, all gases pass through the preform and the high-temperature bottom-preform is densified; At step II, by altering the outlet, temperature and infiltration time, part of gases are sucked into the preform and the remaining coarse preform is densified. The scheme can fabricate tick, uniform and dense composite, it can also avoid huge pump pressure thus protecting fibers from cracking. It is hoped to enlighten the CVI processing of ceramic matrix composites.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 324)

Pages:

198-206

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Baldus, M. Jansen and D. Sporn: Science Vol. 285 (1999), pp.699-703.

Google Scholar

[2] W. Krenkel, in: Ceramic Matrix Composites: Fiber Reinforced Ceramics and their Applications, John Wiley & Sons Publising, NY (2008).

Google Scholar

[3] T.M. Besmann, R.A. Lowden, D.P. Stinton and T.L. Starr: Le Journal de Physique Colloques Vol. 50 (1989), pp.229-239.

DOI: 10.1051/jphyscol:1989529

Google Scholar

[4] S. Vaidyaraman, W.J. Lackey, G.B. Freeman, P.K. Agrawal and M.D. Langman: J. Mater. Res. Vol. 10 (1995), pp.1469-1477.

Google Scholar

[5] S. Vaidyaraman and W.J. Lackey: Carbon Vol. 33 (1995), pp.1211-1215.

Google Scholar

[6] T.M. Besmann, and J.C. McLaughlin: J. Nucl. Mater. Vol. 219 (1995), pp.31-35.

Google Scholar

[7] K.J. Probst, T.M. Besmann, D.P. Stinton, R.A. Lowden, T.J. Anderson and T.L. Starr: Surf. Coat. Technol. Vol. 120 (1999), pp.250-258.

Google Scholar

[8] G.N. Morscher, M. Singh, J.D. Kiser, M. Freedman and R. Bhatt: Compos. Sci. Technol. Vol. 67 (2007), pp.1009-1017.

Google Scholar

[9] R. Naslain, and R. Pailler: Key Eng. Mater. Vol. 159 (1999), pp.359-366.

Google Scholar

[10] J. Xie, K.Z. Li, H.J. Li, and L.J. Guo: Ceram. Int. Vol. 39 (2013), pp.4171-4178.

Google Scholar

[11] Y.G. Wang, L.T. Zhang and L.F. Cheng: Ceram. Int. Vol. 37 (2011), pp.1277-1283.

Google Scholar

[12] J.X. Zhang, L.F. Cheng and Y.S. Liu: Ceram. Int. Vol. 43 (2017), pp.13276-13281.

Google Scholar

[13] J. Wang, L.F. Cheng, Y. Zhang and Q. Zhang: Ceram. Int. (2017), in press.

Google Scholar

[14] N. Reuge and G.L. Vignoles: J. Mater. Process Tech. Vol. 166 (2005), pp.15-29.

Google Scholar

[15] L.F. Albright, in: Albright's chemical engineering handbook. CRC Press Publising, Boca Raton (2008).

Google Scholar

[16] Y.F. Hua, L.T. Zhang and J.H. Du: Comp. Mater. Sci. Vol. 46 (2009), pp.133-141.

Google Scholar

[17] S. Vaidyaraman and P.K. Agrawal T.L: Carbon Vol. 34 (1996), pp.1123-1133.

Google Scholar

[18] X. Wei and L.F. Cheng: Model. Simul. Mater. Sci. Vol. 14 (2006), pp.891-904.

Google Scholar

[19] M.K. Moallemi and H. Zhang: Combust. Flame Vol. 95 (1993), pp.170-182.

Google Scholar

[20] H.J. Xu and Z.B. Xing: Chem. Eng. Sci. Vol. 195 (2019), pp.462-483.

Google Scholar

[21] F.Q. Wang, J.Y. Tan, L.X. Ma and Y. Leng: Sol. Energy Vol. (2014), pp.348-359.

Google Scholar

[22] Z.H Tang, D.N. Qu, J. Xiong and Z.Q. Zou: Carbon Vol. (2003), pp.2703-2710.

Google Scholar