Computational Revolutions in Lattice Thermal Conductivity

Article Preview

Abstract:

Understanding and controlling the phonon, the dominant heat carrier of semiconductor materials, is essential to developing a wide variety of applications. This article studies the theoretical and computational approach of the calculation of lattice thermal conductivity of semiconducting materials. Despite having different methods to calculate the lattice thermal conductivity, first-principle estimates predict more accurately in most applications. This motivates to present the descriptive explanation on first-principle calculation with the combination of lattice dynamics and Boltzmann transport equation. Finally, we summarized an overview of the recent achievements and opportunities.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 324)

Pages:

181-187

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Minnich and G. Chen, Modified effective medium formulation for the thermal conductivity of nanocomposites,, Appl. Phys. Lett., vol. 91, no. 7, p.17–20, 2007,.

DOI: 10.1063/1.2771040

Google Scholar

[2] L. Lindsay, A. Katre, A. Cepellotti, and N. Mingo, Perspective on ab initio phonon thermal transport,, J. Appl. Phys., vol. 126, no. 5, p.050902, Aug. 2019,.

DOI: 10.1063/1.5108651

Google Scholar

[3] G. Fugallo and L. Colombo, Calculating lattice thermal conductivity: A synopsis,, Phys. Scr., vol. 93, no. 4, p.43002, (2018).

DOI: 10.1088/1402-4896/aab743

Google Scholar

[4] D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles,, Appl. Phys. Lett., vol. 91, no. 23, (2007).

DOI: 10.1063/1.2822891

Google Scholar

[5] L. Lindsay, D. A. Broido, and T. L. Reinecke, First-principles determination of ultrahigh thermal conductivity of boron arsenide:A competitor for diamond, Phys. Rev. Lett., vol. 111, no. 2, p.1–5, (2013).

DOI: 10.1103/physrevlett.111.025901

Google Scholar

[6] K. Esfarjani and H. T. Stokes, Method to extract anharmonic force constants from first principles calculations,, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 14, p.1–7, (2008).

DOI: 10.1103/physrevb.77.144112

Google Scholar

[7] S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory,, Reviews of Modern Physics. (2001).

DOI: 10.1103/revmodphys.73.515

Google Scholar

[8] G. Deinzer, G. Birner, and D. Strauch, Ab initio calculation of the linewidth of various phonon modes in germanium and silicon,, Phys. Rev. B, vol. 67, no. 14, p.144304, Apr. (2003).

DOI: 10.1103/physrevb.67.144304

Google Scholar

[9] J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, and G. I. Csonka, Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits,, J. Chem. Phys., vol. 123, no. 6, (2005).

DOI: 10.1063/1.1904565

Google Scholar

[10] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory,, Rev. Mod. Phys., vol. 73, no. 2, p.515–562, Jul. (2001).

DOI: 10.1103/revmodphys.73.515

Google Scholar

[11] P. Giannozzi et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,, J. Phys. Condens. Matter, vol. 21, no. 39, (2009).

Google Scholar

[12] J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond,, J. Comput. Chem., vol. 29, no. 13, p.2044–2078, Oct. (2008).

DOI: 10.1002/jcc.21057

Google Scholar

[13] X. Gonze et al., ABINIT: First-principles approach to material and nanosystem properties,, Comput. Phys. Commun., vol. 180, no. 12, p.2582–2615, Dec. (2009).

Google Scholar

[14] J. E. Turney, E. S. Landry, A. J. H. McGaughey, and C. H. Amon, Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations,, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 79, no. 6, p.1–12, (2009).

DOI: 10.1103/physrevb.79.064301

Google Scholar

[15] T. Feng, L. Lindsay, and X. Ruan, Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids,, Phys. Rev. B, vol. 96, no. 16, p.1–6, (2017).

DOI: 10.1103/physrevb.96.161201

Google Scholar

[16] T. Feng and X. Ruan, Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids,, Phys. Rev. B, vol. 93, no. 4, p.1–10, (2016).

DOI: 10.1103/physrevb.93.045202

Google Scholar

[17] A. Chernatynskiy and S. R. Phillpot, Evaluation of computational techniques for solving the Boltzmann transport equation for lattice thermal conductivity calculations,, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 82, no. 13, p.1–17, (2010).

DOI: 10.1103/physrevb.82.134301

Google Scholar

[18] S. Pettersson, Solving the phonon Boltzmann equation with the variational method,, Phys. Rev. B, vol. 43, no. 11, p.9238–9246, Apr. (1991).

DOI: 10.1103/physrevb.43.9238

Google Scholar

[19] W. Li, N. A. Katcho, and N. Mingo, ShengBTE : A solver of the Boltzmann transport equation,, vol. 185, p.1747–1758, (2014).

DOI: 10.1016/j.cpc.2014.02.015

Google Scholar

[20] A. Togo, L. Chaput, and I. Tanaka, Distributions of phonon lifetimes in Brillouin zones,, vol. 094306, (2015).

Google Scholar

[21] J. Carrete et al., almaBTE : a solver of the space-time dependent Boltzmann transport equation for phonons in structured materials,, Comput. Phys. Commun., (2017).

DOI: 10.1016/j.cpc.2017.06.023

Google Scholar

[22] T. Tadano, Y. Gohda, and S. Tsuneyuki, Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations,, J. Phys. Condens. Matter, vol. 26, no. 22, p.225402, (2014).

DOI: 10.1088/0953-8984/26/22/225402

Google Scholar

[23] Feng, L. Lindsay, and X. Ruan, Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids,, vol. 161201, p.1–6, (2017).

DOI: 10.1103/physrevb.96.161201

Google Scholar

[24] S. Li et al., High thermal conductivity in cubic boron arsenide crystals,, Science, vol. 361, no. 6402, p.579–581, (2018).

DOI: 10.1126/science.aat8982

Google Scholar

[25] Q. Zheng et al., High Thermal Conductivity in Isotopically Enriched Cubic Boron Phosphide,, Adv. Funct. Mater., vol. 28, no. 43, p.1–9, (2018).

DOI: 10.1002/adfm.201805116

Google Scholar

[26] J. S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu, Experimental observation of high thermal conductivity in boron arsenide,, Science (80-. )., vol. 361, no. 6402, p.575–578, (2018).

DOI: 10.1126/science.aat5522

Google Scholar