Study of the Optical Properties of Electrospun PAN/GO Nanocomposites

Article Preview

Abstract:

Polymer nanocomposites with unique optical properties are currently one of the materials most desired by the industry. An effective method of producing this type of materials is the method of electrospinning from a solution or melted polymers, which allows to obtain a nanocomposite in the form of a mat composed of nanofibers. This paper describes the process of producing nanofibers from polyacrylonitrile (PAN) and composite thin nanofiber mats from PAN with the addition of graphene oxide (GO) particles using the electrospinning method. In addition, the aim of the work was to investigate the influence of process parameters and filler on the morphology and optical properties of the nanomaterial. By changing the configuration of the distance between the nozzle and the collector (10 and 20 cm) and keeping the remaining parameters of the electrospinning process constant, two PAN polymer samples and two PAN/GO composite samples were manufactured. The analysis of the chemical composition and morphology of the obtained materials was performed using X-ray microanalysis (EDX) and scanning electron microscopy (SEM), respectively. In order to examine the chemical structure of the polymer and composite nanofibers, Fourier-Transform Infrared Spectroscopy (FTIR) was used. The analysis of the optical properties and the energy band gap of the prepared nanofibers was determined by spectral analysis using a UV–Vis spectrophotometer. The research showed a significant influence of the filler on the morphology.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 326)

Pages:

17-31

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Matysiak, T. Tański, P. Jarka, M. Nowak, M. Kępińska, and P. Szperlich, Comparison of optical properties of PAN/TiO2, PAN/Bi2O3, and PAN/SbSI nanofibers, Opt. Mater. (Amst). 83 (2018)145–151.

DOI: 10.1016/j.optmat.2018.05.055

Google Scholar

[2] D. N. Phan et al., A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes, Carbohydr. Polym. 252 (2021) 117175.

DOI: 10.1016/j.carbpol.2020.117175

Google Scholar

[3] P. Jarka, T. Tański, W. Matysiak, Ł. Krzemiński, B. Hajduk, and M. Bilewicz, Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO 2 , Bi 2 O 3 and SiO 2 nanoparticles, Appl. Surf. Sci. 424 (2017) 206–212.

DOI: 10.1016/j.apsusc.2017.03.232

Google Scholar

[4] T. Tański, W. Matysiak, and P. Jarka, Introductory Chapter: Electrospinning-smart Nanofiber Mats, in: Electrospinning Method Used to Create Functional Nanocomposites Films, InTech, (2018).

DOI: 10.5772/intechopen.77198

Google Scholar

[5] B. Xu et al., Electrospinning preparation of PAN/TiO2/PANI hybrid fiber membrane with highly selective adsorption and photocatalytic regeneration properties, Chem. Eng. J., 399, (2020)125749.

DOI: 10.1016/j.cej.2020.125749

Google Scholar

[6] O. Mukongo Mpukuta, K. Dincer, and M. Okan Erdal, Investigation of electrical conductivity of PAN nanofibers containing silica nanoparticles produced by electrospinning method, Mater. Today Proc. 18 (2019) 1927–(1935).

DOI: 10.1016/j.matpr.2019.06.683

Google Scholar

[7] W. Zhang et al., Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodium-ion batteries, Chem. Eng. J. 348 (2018) 599–607.

DOI: 10.1016/j.cej.2018.05.024

Google Scholar

[8] X. X. Wang, G. F. Yu, J. Zhang, M. Yu, S. Ramakrishna, and Y. Z. Long, Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications,, Prog. Mater. Sci. 115 (2021) 100704.

DOI: 10.1016/j.pmatsci.2020.100704

Google Scholar

[9] S. Zhu and L. Nie, Progress in fabrication of one-dimensional catalytic materials by electrospinning technology, J. Ind. Eng. Chem. 93 (2021) 28–56.

Google Scholar

[10] L.A. Mercante, V.P. Scagion, F.L. Migliorini, L.H.C. Mattoso, and D.S. Correa, Electrospinning-based (bio)sensors for food and agricultural applications: A review, TrAC - Trends in Analytical Chemistry, vol. 91 (2017) 91–103.

DOI: 10.1016/j.trac.2017.04.004

Google Scholar

[11] Q. Liu, J. Zhu, L. Zhang, and Y. Qiu, Recent advances in energy materials by electrospinning, Renew. Sust. Energ. Rev., 81 (2018) 1825–1858.

Google Scholar

[12] C. Bavatharani et al., Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review, Synth. Met., 271 (2020) 116609.

DOI: 10.1016/j.synthmet.2020.116609

Google Scholar

[13] A. D. Juncos Bombin, N. J. Dunne, and H. O. McCarthy, Electrospinning of natural polymers for the production of nanofibres for wound healing applications, Mater. Sci. Eng. C. 114. (2020) 110994.

DOI: 10.1016/j.msec.2020.110994

Google Scholar

[14] D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu, Electrospinning of Nanofibers from Polymer Solutions and Melts, Adv. Appl. Mech. 41 (2007) 43–346.

DOI: 10.1016/s0065-2156(07)41002-x

Google Scholar

[15] O. O. Dosunmu, G. G. Chase, W. Kataphinan, and D. H. Reneker, Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface, Nanotechnology, 17 (2006) 1123–1127.

DOI: 10.1088/0957-4484/17/4/046

Google Scholar

[16] A. L. Yarin, S. Koombhongse, and D. H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, J. Appl. Phys. 90 (2001) 4836–4846.

DOI: 10.1063/1.1408260

Google Scholar

[17] J. Doshi and D. H. Reneker, Electrospinning process and applications of electrospun fibers, J. Electrostat. 35 (1995) 151–160.

DOI: 10.1016/0304-3886(95)00041-8

Google Scholar

[18] D. H. Reneker and A. L. Yarin, Electrospinning jets and polymer nanofibers, Polymer, vol. 49 (2008) 2387–2425.

DOI: 10.1016/j.polymer.2008.02.002

Google Scholar

[19] Z. L. Wang, L. Dai, and D. H. Reneker, Polymer Nanowires and Nanofibers, in Nanowires and Nanobelts, Springer US, 269–288, (2003).

DOI: 10.1007/978-0-387-28747-8_15

Google Scholar

[20] N. Bhardwaj and S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotech. Adv. 28 (2010) 325–347.

DOI: 10.1016/j.biotechadv.2010.01.004

Google Scholar

[21] J. Xue, T. Wu, Y. Dai, and Y. Xia, Electrospinning and electrospun nanofibers: Methods, materials, and applications, Chem. Rev. 119 (2019) 5298–5415.

DOI: 10.1021/acs.chemrev.8b00593

Google Scholar

[22] G. Yang, X. Li, Y. He, J. Ma, G. Ni, and S. Zhou, From nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications, Prog. Polym. Sci. 81 (2018). 80–113.

DOI: 10.1016/j.progpolymsci.2017.12.003

Google Scholar

[23] A. G. Alvarado and G. Chauhan, Nanofiber alignment for biomedical applications, Materials Today Proceedings, (2020).

Google Scholar

[24] S. Agarwal, A. Greimer, and J. H. Wendorff, Electrospinning of manmade and biopolymer nanofibers - Progress in techniques, materials, and applications, Adv. Funct. Mater. 19 (2009) 2863–2879.

DOI: 10.1002/adfm.200900591

Google Scholar

[25] R. Ghafari, R. Scaffaro, A. Maio, E. F. Gulino, G. Lo Re, and M. Jonoobi, Processing-structure-property relationships of electrospun PLA-PEO membranes reinforced with enzymatic cellulose nanofibers, Polym. Test. 81 (2020) 106182.

DOI: 10.1016/j.polymertesting.2019.106182

Google Scholar

[26] P. Philip, E. Tomlal Jose, J. K. Chacko, K. C. Philip, and P. C. Thomas, Preparation and characterisation of surface roughened PMMA electrospun nanofibers from PEO - PMMA polymer blend nanofibers, Polym. Test. 7 (2019) 257–265.

DOI: 10.1016/j.polymertesting.2019.01.009

Google Scholar

[27] M. Yanilmaz, C. Chen, and X. Zhang, Fabrication and characterization of SiO2/PVDF composite nanofiber-coated PP nonwoven separators for lithium-ion batteries, J. Polym. Sci. Part B Polym. Phys. 51 (2013) 1719–1726.

DOI: 10.1002/polb.23387

Google Scholar

[28] M. Yanilmaz, Y. Lu, J. Zhu, and X. Zhang, Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries, J. Power Sour. 313 (2016) 205–212.

DOI: 10.1016/j.jpowsour.2016.02.089

Google Scholar

[29] C. Wang, Y. Tong, Z. Sun, Y. Xin, E. Yan, and Z. Huang, Preparation of one-dimensional TiO2 nanoparticles within polymer fiber matrices by electrospinning, Mater. Lett. 61 (2007) 5125–5128.

DOI: 10.1016/j.matlet.2007.04.051

Google Scholar

[30] A. E. Deniz, H. A. Vural, B. Ortaç, and T. Uyar, Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning, Mater. Lett. 65 (2011) 2941–2943.

DOI: 10.1016/j.matlet.2011.06.045

Google Scholar

[31] J. Bai, Y. Li, C. Zhang, X. Liang, and Q. Yang, Preparing AgBr nanoparticles in poly(vinyl pyrrolidone) (PVP) nanofibers, Colloids Surfaces A Physicochem. Eng. Asp. 329 (2008) 165–168.

DOI: 10.1016/j.colsurfa.2008.07.010

Google Scholar

[32] J. J. Ahire, D. D. Robertson, A. J. van Reenen, and L. M. T. Dicks, Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes, Biomed. Pharmacother. 86 (2017) 143–148.

DOI: 10.1016/j.biopha.2016.12.006

Google Scholar

[33] Z. Zhang, Y. Wu, Z. Wang, X. Zou, Y. Zhao, and L. Sun, Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities, Mater. Sci. Eng. C. 69 (2016) 462–469.

DOI: 10.1016/j.msec.2016.07.015

Google Scholar

[34] A. M. Abdel-Mohsen, D. Pavliňák, M. Čileková, P. Lepcio, R. M. Abdel-Rahman, and J. Jančář, Electrospinning of hyaluronan/polyvinyl alcohol in presence of in-situ silver nanoparticles: Preparation and characterization, Int. J. Biol. Macromol. 139 (2019) 730–739.

DOI: 10.1016/j.ijbiomac.2019.07.205

Google Scholar

[35] T. Istirohah, S. W. Himmah, and M. Diantoro, Fabrication of Aligned PAN/TiO2 Fiber using Electric Electrospinning (EES), in: Materials Today: Proceedings, 2019, 13, p.211–216.

DOI: 10.1016/j.matpr.2019.03.216

Google Scholar

[36] L. Shi et al., High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting, Nano Ener. 80 (2021) 105599.

DOI: 10.1016/j.nanoen.2020.105599

Google Scholar

[37] A. Baji, Y. W. Mai, S. C. Wong, M. Abtahi, and P. Chen, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties, Compos. Sci. Tech.70 (2010) 703–718.

DOI: 10.1016/j.compscitech.2010.01.010

Google Scholar

[38] M. Lewandowska and K. Kurzydłowski, Nanomateriały inżynierskie konstrukcyjne i funkcjonalne. Wydawnictwo naukowe PWN, Warszawa, (2010).

Google Scholar

[39] W. Matysiak, T. Tanski, and W. Smok, Electrospinning as a versatile method of composite thin films fabrication for selected applications, Solid State Phenom., 293 (2019) 35–49.

DOI: 10.4028/www.scientific.net/ssp.293.35

Google Scholar

[40] T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, Electrospinning of nanofibers, J. Appl. Polym. Sci. 96 (2005) 557–569.

DOI: 10.1002/app.21481

Google Scholar

[41] M.M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Electrospinning and electrically forced jets. I. Stability theory, Phys. Fluids. 13 (2001) 2201–2220.

DOI: 10.1063/1.1383791

Google Scholar

[42] Y.Z. Long, X. Yan, X.X. Wang, J. Zhang, and M. Yu, Chapter 2 - Electrospinning: The Setup and Procedure. Elsevier Inc., (2019).

Google Scholar

[43] B. Ding, E. Kimura, T. Sato, S. Fujita, and S. Shiratori, Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning, Polymer (Guildf). 45 (2004) 1895–(1902).

DOI: 10.1016/j.polymer.2004.01.026

Google Scholar

[44] S. A. Theron, A.L. Yarin, E. Zussman, and E. Kroll, Multiple jets in electrospinning: Experiment and modeling, Polymer (Guildf)., vol. 46 (2005) 2889–2899.

DOI: 10.1016/j.polymer.2005.01.054

Google Scholar

[45] V. Eskizeybek, A. Yar, and A. Avcı, CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness, Compos. Sci. Technol. 157 (2018) 30–39.

DOI: 10.1016/j.compscitech.2018.01.021

Google Scholar

[46] A. Mohamed et al., Photocatalytic degradation of organic dyes and enhanced mechanical properties of PAN/CNTs composite nanofibers, Sep. Purif. Technol. 182 (2017) 219–223.

DOI: 10.1016/j.seppur.2017.03.051

Google Scholar

[47] L. Li et al., Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding, Compos. Part A Appl. Sci. Manuf.139 (2020). 106134.

DOI: 10.1016/j.compositesa.2020.106134

Google Scholar

[48] J.D. Badia, R. Teruel-Juanes, Y. Echegoyen, S. Torres-Giner, J.M. Lagarón, and A. Ribes-Greus, Effect of graphene nanoplatelets on the dielectric permittivity and segmental motions of electrospun poly(ethylene-co-vinyl alcohol) nanofibers, Polym. Degrad. Stab. (2020) 109404.

DOI: 10.1016/j.polymdegradstab.2020.109404

Google Scholar

[49] S. D. Mustafov, A.K. Mohanty, M. Misra, and M.Ö. Seydibeyoğlu, Fabrication of conductive Lignin/PAN carbon nanofiber with enhanced graphene for the modified electrode, Carbon N. Y. 147 (2019) 262–275.

DOI: 10.1016/j.carbon.2019.02.058

Google Scholar

[50] M. Heidari, S.H. Bahrami, M. Ranjbar-Mohammadi, and P.B. Milan, Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering, Mater. Sci. Eng. C. 103 (2019) 109768.

DOI: 10.1016/j.msec.2019.109768

Google Scholar

[51] A. Mirmohseni, M. Azizi, and M. S. S. Dorraji, Cationic graphene oxide nanosheets intercalated with polyaniline nanofibers: A promising candidate for simultaneous anticorrosion, antistatic, and antibacterial applications, Prog. Org. Coat. 139 (2020) 105419.

DOI: 10.1016/j.porgcoat.2019.105419

Google Scholar

[52] Z. Q. Feng, X. Yuan, and T. Wang, Porous polyacrylonitrile/graphene oxide nanofibers designed for high efficient adsorption of chromium ions (VI) in aqueous solution, Chem. Eng. J. 392 (2020) 123730.

DOI: 10.1016/j.cej.2019.123730

Google Scholar

[53] Y. N. Kim et al., Flame retardant, antimicrobial, and mechanical properties of multifunctional polyurethane nanofibers containing tannic acid-coated reduced graphene oxide, Polym. Test., vol. 93 (2021) 107006.

DOI: 10.1016/j.polymertesting.2020.107006

Google Scholar

[54] J. Yang et al., Piezoelectric Nanogenerators based on Graphene Oxide/PVDF Electrospun Nanofiber with Enhanced Performances by In-Situ Reduction, Mater. Today Commun. (2020 )101629.

DOI: 10.1016/j.mtcomm.2020.101629

Google Scholar

[55] E. J. Ra, K. H. An, K. K. Kim, S. Y. Jeong, and Y. H. Lee, Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper, Chem. Phys. Lett. 413 (2005) 188–193.

DOI: 10.1016/j.cplett.2005.07.061

Google Scholar

[56] A. I. Abd-Elhamid, M. R. El-Aassar, G. F. El Fawal, and H. M. A. Soliman, Fabrication of polyacrylonitrile/β-cyclodextrin/graphene oxide nanofibers composite as an efficient adsorbent for cationic dye, Environ. Nanotech. Monit. Manag. 11 (2019) 100207.

DOI: 10.1016/j.enmm.2018.100207

Google Scholar

[57] H. Karimiyan, A. Uheida, M. Hadjmohammadi, M. M. Moein, and M. Abdel-Rehim, Polyacrylonitrile / graphene oxide nanofibers for packed sorbent microextraction of drugs and their metabolites from human plasma samples, Talanta. 201 (2019) 474–479.

DOI: 10.1016/j.talanta.2019.04.027

Google Scholar

[58] V. E. Kalayci, P. K. Patra, Y. K. Kim, S. C. Ugbolue, and S. B. Warner, Charge consequences in electrospun polyacrylonitrile (PAN) nanofibers, Polymer (Guildf). 46 (2005) 7191–7200.

DOI: 10.1016/j.polymer.2005.06.041

Google Scholar

[59] A. Buer, S. C. Ugbolue, and S. B. Warner, Electrospinning and Properties of Some Nanofibers, Text. Res. J. 71 (2001). 323–328.

DOI: 10.1177/004051750107100408

Google Scholar

[60] N. Sirelkhatim, A. Parveen, D. LaJeunesse, D. Yu, and L. Zhang, Polyacrylonitrile nanofibrous mat from electrospinning: Born with potential anti-fungal functionality, Eur. Polym. J. 119 (2019) 176–180.

DOI: 10.1016/j.eurpolymj.2019.07.035

Google Scholar

[61] S. Almuhamed et al., Electrospinning composite nanofibers of polyacrylonitrile/synthetic Na-montmorillonite, J. Ind. Eng. Chem. 35 (2016) 146–152.

DOI: 10.1016/j.jiec.2015.12.024

Google Scholar

[62] Z. Zhang, H. C. Schniepp, and D. H. Adamson, Characterization of graphene oxide: Variations in reported approaches, Carbon. 154 (2019) 510–521.

DOI: 10.1016/j.carbon.2019.07.103

Google Scholar

[63] S. H. Kang, T. H. Fang, and Z. H. Hong, Electrical and mechanical properties of graphene oxide on flexible substrate, J. Phys. Chem. Solids. 74 (2013) 1783–1793.

DOI: 10.1016/j.jpcs.2013.07.009

Google Scholar

[64] K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, and R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett. 8 (2008) 36–41.

DOI: 10.1021/nl071822y

Google Scholar

[65] G. Wang, B. Wang, J. Park, J. Yang, X. Shen, and J. Yao, Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method, Carbon N. Y. 47 (2009) 68–72.

DOI: 10.1016/j.carbon.2008.09.002

Google Scholar

[66] D. A. Dikin et al., Preparation and characterization of graphene oxide paper, Nature. 448 (2007) 457–460.

Google Scholar

[67] P. Heikkilä and A. Harlin, Electrospinning of polyacrylonitrile (PAN) solution: Effect of conductive additive and filler on the process, Express Polym. Lett. 3 (2009) 437–445.

DOI: 10.3144/expresspolymlett.2009.53

Google Scholar

[68] J. Zhang et al., Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion, Chem. Eng. J. 307 (2017) 643–649.

DOI: 10.1016/j.cej.2016.08.124

Google Scholar

[69] A. Amir et al., Microstructure of fibres pressure-spun from polyacrylonitrile–graphene oxide composite mixtures, Compos. Sci. Technol. 197 (2020) 108214.

DOI: 10.1016/j.compscitech.2020.108214

Google Scholar

[70] J. Li, Y. Hu, H. Qiu, G. Yang, S. Zheng, and J. Yang, Coaxial electrospun fibres with graphene oxide/PAN shells for self-healing waterborne polyurethane coatings, Prog. Org. Coat. 131 (2019) 227–231.

DOI: 10.1016/j.porgcoat.2019.02.033

Google Scholar

[71] X. Fan et al., Electrospun reduced graphene oxide/polyacrylonitrile membrane for high-performance solar evaporation, Sol. Energy. 209 (2020) 325–333.

DOI: 10.1016/j.solener.2020.09.013

Google Scholar

[72] E. Aliyev, V. Filiz, M. M. Khan, Y. J. Lee, C. Abetz, and V. Abetz, Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris, Nanomaterials, 9 (2019) 1180.

DOI: 10.3390/nano9081180

Google Scholar

[73] L. A. Pérez, N. Bajales, and G. I. Lacconi, Raman spectroscopy coupled with AFM scan head: A versatile combination for tailoring graphene oxide/reduced graphene oxide hybrid materials, Appl. Surf. Sci. 495 (2019) 143539.

DOI: 10.1016/j.apsusc.2019.143539

Google Scholar

[74] A. Y. Lee et al., Raman study of D* band in graphene oxide and its correlation with reduction, Appl. Surf. Sci. 536 (2021) 147990.

Google Scholar

[75] R. Nayak, R. Padhye, and L. Arnold, Melt-electrospinning of nanofibers, in: Electrospun Nanofibers, Elsevier Inc., 2017, p.11–40.

DOI: 10.1016/b978-0-08-100907-9.00002-7

Google Scholar

[76] S. Tas, O. Kaynan, E. Ozden-Yenigun, and K. Nijmeijer, Polyacrylonitrile (PAN)/crown ether composite nanofibers for the selective adsorption of cations, RSC Adv. 6 (2016) 3608–3616.

DOI: 10.1039/c5ra23214g

Google Scholar

[77] J. Zhang, Z. Lu, M. Wu, Q. Wu, and J. Yang, Large-scale synthesis and characterization of magnetic poly(acrylic acid) nanogels via miniemulsion polymerization, RSC Adv., vol. 5, no. 72 (2015) 58889–58894.

DOI: 10.1039/c5ra09494a

Google Scholar

[78] T. Tański, W. Matysiak, and Ł. Krzemiński, Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers, Mater. Manuf. Process. 32 (2017) 1218–1224.

DOI: 10.1080/10426914.2016.1257129

Google Scholar

[79] S. Lei, S. Zhong, Y. Wang, Y. Tong, and L. Xu, Preparation of monodisperse reduced graphene oxide/polyacrylonitrile composite and its thermal-induced structural transformation, Mater. Lett. 161 (2015) 108–111.

DOI: 10.1016/j.matlet.2015.08.039

Google Scholar

[80] W. Matysiak, T. Tański, W. Smok, K. Gołombek, E. Schab-Balcerzak, Effect of conductive polymers on the optical properties of electrospun polyacrylonitryle nanofibers filled by polypyrrole, polythiophene and polyaniline, Appl. Surf. Sci. 509 (2020) 145068.

DOI: 10.1016/j.apsusc.2019.145068

Google Scholar