[1]
W. Matysiak, T. Tański, P. Jarka, M. Nowak, M. Kępińska, and P. Szperlich, Comparison of optical properties of PAN/TiO2, PAN/Bi2O3, and PAN/SbSI nanofibers, Opt. Mater. (Amst). 83 (2018)145–151.
DOI: 10.1016/j.optmat.2018.05.055
Google Scholar
[2]
D. N. Phan et al., A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes, Carbohydr. Polym. 252 (2021) 117175.
DOI: 10.1016/j.carbpol.2020.117175
Google Scholar
[3]
P. Jarka, T. Tański, W. Matysiak, Ł. Krzemiński, B. Hajduk, and M. Bilewicz, Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO 2 , Bi 2 O 3 and SiO 2 nanoparticles, Appl. Surf. Sci. 424 (2017) 206–212.
DOI: 10.1016/j.apsusc.2017.03.232
Google Scholar
[4]
T. Tański, W. Matysiak, and P. Jarka, Introductory Chapter: Electrospinning-smart Nanofiber Mats, in: Electrospinning Method Used to Create Functional Nanocomposites Films, InTech, (2018).
DOI: 10.5772/intechopen.77198
Google Scholar
[5]
B. Xu et al., Electrospinning preparation of PAN/TiO2/PANI hybrid fiber membrane with highly selective adsorption and photocatalytic regeneration properties, Chem. Eng. J., 399, (2020)125749.
DOI: 10.1016/j.cej.2020.125749
Google Scholar
[6]
O. Mukongo Mpukuta, K. Dincer, and M. Okan Erdal, Investigation of electrical conductivity of PAN nanofibers containing silica nanoparticles produced by electrospinning method, Mater. Today Proc. 18 (2019) 1927–(1935).
DOI: 10.1016/j.matpr.2019.06.683
Google Scholar
[7]
W. Zhang et al., Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodium-ion batteries, Chem. Eng. J. 348 (2018) 599–607.
DOI: 10.1016/j.cej.2018.05.024
Google Scholar
[8]
X. X. Wang, G. F. Yu, J. Zhang, M. Yu, S. Ramakrishna, and Y. Z. Long, Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications,, Prog. Mater. Sci. 115 (2021) 100704.
DOI: 10.1016/j.pmatsci.2020.100704
Google Scholar
[9]
S. Zhu and L. Nie, Progress in fabrication of one-dimensional catalytic materials by electrospinning technology, J. Ind. Eng. Chem. 93 (2021) 28–56.
Google Scholar
[10]
L.A. Mercante, V.P. Scagion, F.L. Migliorini, L.H.C. Mattoso, and D.S. Correa, Electrospinning-based (bio)sensors for food and agricultural applications: A review, TrAC - Trends in Analytical Chemistry, vol. 91 (2017) 91–103.
DOI: 10.1016/j.trac.2017.04.004
Google Scholar
[11]
Q. Liu, J. Zhu, L. Zhang, and Y. Qiu, Recent advances in energy materials by electrospinning, Renew. Sust. Energ. Rev., 81 (2018) 1825–1858.
Google Scholar
[12]
C. Bavatharani et al., Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review, Synth. Met., 271 (2020) 116609.
DOI: 10.1016/j.synthmet.2020.116609
Google Scholar
[13]
A. D. Juncos Bombin, N. J. Dunne, and H. O. McCarthy, Electrospinning of natural polymers for the production of nanofibres for wound healing applications, Mater. Sci. Eng. C. 114. (2020) 110994.
DOI: 10.1016/j.msec.2020.110994
Google Scholar
[14]
D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu, Electrospinning of Nanofibers from Polymer Solutions and Melts, Adv. Appl. Mech. 41 (2007) 43–346.
DOI: 10.1016/s0065-2156(07)41002-x
Google Scholar
[15]
O. O. Dosunmu, G. G. Chase, W. Kataphinan, and D. H. Reneker, Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface, Nanotechnology, 17 (2006) 1123–1127.
DOI: 10.1088/0957-4484/17/4/046
Google Scholar
[16]
A. L. Yarin, S. Koombhongse, and D. H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, J. Appl. Phys. 90 (2001) 4836–4846.
DOI: 10.1063/1.1408260
Google Scholar
[17]
J. Doshi and D. H. Reneker, Electrospinning process and applications of electrospun fibers, J. Electrostat. 35 (1995) 151–160.
DOI: 10.1016/0304-3886(95)00041-8
Google Scholar
[18]
D. H. Reneker and A. L. Yarin, Electrospinning jets and polymer nanofibers, Polymer, vol. 49 (2008) 2387–2425.
DOI: 10.1016/j.polymer.2008.02.002
Google Scholar
[19]
Z. L. Wang, L. Dai, and D. H. Reneker, Polymer Nanowires and Nanofibers, in Nanowires and Nanobelts, Springer US, 269–288, (2003).
DOI: 10.1007/978-0-387-28747-8_15
Google Scholar
[20]
N. Bhardwaj and S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotech. Adv. 28 (2010) 325–347.
DOI: 10.1016/j.biotechadv.2010.01.004
Google Scholar
[21]
J. Xue, T. Wu, Y. Dai, and Y. Xia, Electrospinning and electrospun nanofibers: Methods, materials, and applications, Chem. Rev. 119 (2019) 5298–5415.
DOI: 10.1021/acs.chemrev.8b00593
Google Scholar
[22]
G. Yang, X. Li, Y. He, J. Ma, G. Ni, and S. Zhou, From nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications, Prog. Polym. Sci. 81 (2018). 80–113.
DOI: 10.1016/j.progpolymsci.2017.12.003
Google Scholar
[23]
A. G. Alvarado and G. Chauhan, Nanofiber alignment for biomedical applications, Materials Today Proceedings, (2020).
Google Scholar
[24]
S. Agarwal, A. Greimer, and J. H. Wendorff, Electrospinning of manmade and biopolymer nanofibers - Progress in techniques, materials, and applications, Adv. Funct. Mater. 19 (2009) 2863–2879.
DOI: 10.1002/adfm.200900591
Google Scholar
[25]
R. Ghafari, R. Scaffaro, A. Maio, E. F. Gulino, G. Lo Re, and M. Jonoobi, Processing-structure-property relationships of electrospun PLA-PEO membranes reinforced with enzymatic cellulose nanofibers, Polym. Test. 81 (2020) 106182.
DOI: 10.1016/j.polymertesting.2019.106182
Google Scholar
[26]
P. Philip, E. Tomlal Jose, J. K. Chacko, K. C. Philip, and P. C. Thomas, Preparation and characterisation of surface roughened PMMA electrospun nanofibers from PEO - PMMA polymer blend nanofibers, Polym. Test. 7 (2019) 257–265.
DOI: 10.1016/j.polymertesting.2019.01.009
Google Scholar
[27]
M. Yanilmaz, C. Chen, and X. Zhang, Fabrication and characterization of SiO2/PVDF composite nanofiber-coated PP nonwoven separators for lithium-ion batteries, J. Polym. Sci. Part B Polym. Phys. 51 (2013) 1719–1726.
DOI: 10.1002/polb.23387
Google Scholar
[28]
M. Yanilmaz, Y. Lu, J. Zhu, and X. Zhang, Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries, J. Power Sour. 313 (2016) 205–212.
DOI: 10.1016/j.jpowsour.2016.02.089
Google Scholar
[29]
C. Wang, Y. Tong, Z. Sun, Y. Xin, E. Yan, and Z. Huang, Preparation of one-dimensional TiO2 nanoparticles within polymer fiber matrices by electrospinning, Mater. Lett. 61 (2007) 5125–5128.
DOI: 10.1016/j.matlet.2007.04.051
Google Scholar
[30]
A. E. Deniz, H. A. Vural, B. Ortaç, and T. Uyar, Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning, Mater. Lett. 65 (2011) 2941–2943.
DOI: 10.1016/j.matlet.2011.06.045
Google Scholar
[31]
J. Bai, Y. Li, C. Zhang, X. Liang, and Q. Yang, Preparing AgBr nanoparticles in poly(vinyl pyrrolidone) (PVP) nanofibers, Colloids Surfaces A Physicochem. Eng. Asp. 329 (2008) 165–168.
DOI: 10.1016/j.colsurfa.2008.07.010
Google Scholar
[32]
J. J. Ahire, D. D. Robertson, A. J. van Reenen, and L. M. T. Dicks, Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes, Biomed. Pharmacother. 86 (2017) 143–148.
DOI: 10.1016/j.biopha.2016.12.006
Google Scholar
[33]
Z. Zhang, Y. Wu, Z. Wang, X. Zou, Y. Zhao, and L. Sun, Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities, Mater. Sci. Eng. C. 69 (2016) 462–469.
DOI: 10.1016/j.msec.2016.07.015
Google Scholar
[34]
A. M. Abdel-Mohsen, D. Pavliňák, M. Čileková, P. Lepcio, R. M. Abdel-Rahman, and J. Jančář, Electrospinning of hyaluronan/polyvinyl alcohol in presence of in-situ silver nanoparticles: Preparation and characterization, Int. J. Biol. Macromol. 139 (2019) 730–739.
DOI: 10.1016/j.ijbiomac.2019.07.205
Google Scholar
[35]
T. Istirohah, S. W. Himmah, and M. Diantoro, Fabrication of Aligned PAN/TiO2 Fiber using Electric Electrospinning (EES), in: Materials Today: Proceedings, 2019, 13, p.211–216.
DOI: 10.1016/j.matpr.2019.03.216
Google Scholar
[36]
L. Shi et al., High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting, Nano Ener. 80 (2021) 105599.
DOI: 10.1016/j.nanoen.2020.105599
Google Scholar
[37]
A. Baji, Y. W. Mai, S. C. Wong, M. Abtahi, and P. Chen, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties, Compos. Sci. Tech.70 (2010) 703–718.
DOI: 10.1016/j.compscitech.2010.01.010
Google Scholar
[38]
M. Lewandowska and K. Kurzydłowski, Nanomateriały inżynierskie konstrukcyjne i funkcjonalne. Wydawnictwo naukowe PWN, Warszawa, (2010).
Google Scholar
[39]
W. Matysiak, T. Tanski, and W. Smok, Electrospinning as a versatile method of composite thin films fabrication for selected applications, Solid State Phenom., 293 (2019) 35–49.
DOI: 10.4028/www.scientific.net/ssp.293.35
Google Scholar
[40]
T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, Electrospinning of nanofibers, J. Appl. Polym. Sci. 96 (2005) 557–569.
DOI: 10.1002/app.21481
Google Scholar
[41]
M.M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Electrospinning and electrically forced jets. I. Stability theory, Phys. Fluids. 13 (2001) 2201–2220.
DOI: 10.1063/1.1383791
Google Scholar
[42]
Y.Z. Long, X. Yan, X.X. Wang, J. Zhang, and M. Yu, Chapter 2 - Electrospinning: The Setup and Procedure. Elsevier Inc., (2019).
Google Scholar
[43]
B. Ding, E. Kimura, T. Sato, S. Fujita, and S. Shiratori, Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning, Polymer (Guildf). 45 (2004) 1895–(1902).
DOI: 10.1016/j.polymer.2004.01.026
Google Scholar
[44]
S. A. Theron, A.L. Yarin, E. Zussman, and E. Kroll, Multiple jets in electrospinning: Experiment and modeling, Polymer (Guildf)., vol. 46 (2005) 2889–2899.
DOI: 10.1016/j.polymer.2005.01.054
Google Scholar
[45]
V. Eskizeybek, A. Yar, and A. Avcı, CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness, Compos. Sci. Technol. 157 (2018) 30–39.
DOI: 10.1016/j.compscitech.2018.01.021
Google Scholar
[46]
A. Mohamed et al., Photocatalytic degradation of organic dyes and enhanced mechanical properties of PAN/CNTs composite nanofibers, Sep. Purif. Technol. 182 (2017) 219–223.
DOI: 10.1016/j.seppur.2017.03.051
Google Scholar
[47]
L. Li et al., Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding, Compos. Part A Appl. Sci. Manuf.139 (2020). 106134.
DOI: 10.1016/j.compositesa.2020.106134
Google Scholar
[48]
J.D. Badia, R. Teruel-Juanes, Y. Echegoyen, S. Torres-Giner, J.M. Lagarón, and A. Ribes-Greus, Effect of graphene nanoplatelets on the dielectric permittivity and segmental motions of electrospun poly(ethylene-co-vinyl alcohol) nanofibers, Polym. Degrad. Stab. (2020) 109404.
DOI: 10.1016/j.polymdegradstab.2020.109404
Google Scholar
[49]
S. D. Mustafov, A.K. Mohanty, M. Misra, and M.Ö. Seydibeyoğlu, Fabrication of conductive Lignin/PAN carbon nanofiber with enhanced graphene for the modified electrode, Carbon N. Y. 147 (2019) 262–275.
DOI: 10.1016/j.carbon.2019.02.058
Google Scholar
[50]
M. Heidari, S.H. Bahrami, M. Ranjbar-Mohammadi, and P.B. Milan, Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering, Mater. Sci. Eng. C. 103 (2019) 109768.
DOI: 10.1016/j.msec.2019.109768
Google Scholar
[51]
A. Mirmohseni, M. Azizi, and M. S. S. Dorraji, Cationic graphene oxide nanosheets intercalated with polyaniline nanofibers: A promising candidate for simultaneous anticorrosion, antistatic, and antibacterial applications, Prog. Org. Coat. 139 (2020) 105419.
DOI: 10.1016/j.porgcoat.2019.105419
Google Scholar
[52]
Z. Q. Feng, X. Yuan, and T. Wang, Porous polyacrylonitrile/graphene oxide nanofibers designed for high efficient adsorption of chromium ions (VI) in aqueous solution, Chem. Eng. J. 392 (2020) 123730.
DOI: 10.1016/j.cej.2019.123730
Google Scholar
[53]
Y. N. Kim et al., Flame retardant, antimicrobial, and mechanical properties of multifunctional polyurethane nanofibers containing tannic acid-coated reduced graphene oxide, Polym. Test., vol. 93 (2021) 107006.
DOI: 10.1016/j.polymertesting.2020.107006
Google Scholar
[54]
J. Yang et al., Piezoelectric Nanogenerators based on Graphene Oxide/PVDF Electrospun Nanofiber with Enhanced Performances by In-Situ Reduction, Mater. Today Commun. (2020 )101629.
DOI: 10.1016/j.mtcomm.2020.101629
Google Scholar
[55]
E. J. Ra, K. H. An, K. K. Kim, S. Y. Jeong, and Y. H. Lee, Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper, Chem. Phys. Lett. 413 (2005) 188–193.
DOI: 10.1016/j.cplett.2005.07.061
Google Scholar
[56]
A. I. Abd-Elhamid, M. R. El-Aassar, G. F. El Fawal, and H. M. A. Soliman, Fabrication of polyacrylonitrile/β-cyclodextrin/graphene oxide nanofibers composite as an efficient adsorbent for cationic dye, Environ. Nanotech. Monit. Manag. 11 (2019) 100207.
DOI: 10.1016/j.enmm.2018.100207
Google Scholar
[57]
H. Karimiyan, A. Uheida, M. Hadjmohammadi, M. M. Moein, and M. Abdel-Rehim, Polyacrylonitrile / graphene oxide nanofibers for packed sorbent microextraction of drugs and their metabolites from human plasma samples, Talanta. 201 (2019) 474–479.
DOI: 10.1016/j.talanta.2019.04.027
Google Scholar
[58]
V. E. Kalayci, P. K. Patra, Y. K. Kim, S. C. Ugbolue, and S. B. Warner, Charge consequences in electrospun polyacrylonitrile (PAN) nanofibers, Polymer (Guildf). 46 (2005) 7191–7200.
DOI: 10.1016/j.polymer.2005.06.041
Google Scholar
[59]
A. Buer, S. C. Ugbolue, and S. B. Warner, Electrospinning and Properties of Some Nanofibers, Text. Res. J. 71 (2001). 323–328.
DOI: 10.1177/004051750107100408
Google Scholar
[60]
N. Sirelkhatim, A. Parveen, D. LaJeunesse, D. Yu, and L. Zhang, Polyacrylonitrile nanofibrous mat from electrospinning: Born with potential anti-fungal functionality, Eur. Polym. J. 119 (2019) 176–180.
DOI: 10.1016/j.eurpolymj.2019.07.035
Google Scholar
[61]
S. Almuhamed et al., Electrospinning composite nanofibers of polyacrylonitrile/synthetic Na-montmorillonite, J. Ind. Eng. Chem. 35 (2016) 146–152.
DOI: 10.1016/j.jiec.2015.12.024
Google Scholar
[62]
Z. Zhang, H. C. Schniepp, and D. H. Adamson, Characterization of graphene oxide: Variations in reported approaches, Carbon. 154 (2019) 510–521.
DOI: 10.1016/j.carbon.2019.07.103
Google Scholar
[63]
S. H. Kang, T. H. Fang, and Z. H. Hong, Electrical and mechanical properties of graphene oxide on flexible substrate, J. Phys. Chem. Solids. 74 (2013) 1783–1793.
DOI: 10.1016/j.jpcs.2013.07.009
Google Scholar
[64]
K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, and R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett. 8 (2008) 36–41.
DOI: 10.1021/nl071822y
Google Scholar
[65]
G. Wang, B. Wang, J. Park, J. Yang, X. Shen, and J. Yao, Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method, Carbon N. Y. 47 (2009) 68–72.
DOI: 10.1016/j.carbon.2008.09.002
Google Scholar
[66]
D. A. Dikin et al., Preparation and characterization of graphene oxide paper, Nature. 448 (2007) 457–460.
Google Scholar
[67]
P. Heikkilä and A. Harlin, Electrospinning of polyacrylonitrile (PAN) solution: Effect of conductive additive and filler on the process, Express Polym. Lett. 3 (2009) 437–445.
DOI: 10.3144/expresspolymlett.2009.53
Google Scholar
[68]
J. Zhang et al., Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion, Chem. Eng. J. 307 (2017) 643–649.
DOI: 10.1016/j.cej.2016.08.124
Google Scholar
[69]
A. Amir et al., Microstructure of fibres pressure-spun from polyacrylonitrile–graphene oxide composite mixtures, Compos. Sci. Technol. 197 (2020) 108214.
DOI: 10.1016/j.compscitech.2020.108214
Google Scholar
[70]
J. Li, Y. Hu, H. Qiu, G. Yang, S. Zheng, and J. Yang, Coaxial electrospun fibres with graphene oxide/PAN shells for self-healing waterborne polyurethane coatings, Prog. Org. Coat. 131 (2019) 227–231.
DOI: 10.1016/j.porgcoat.2019.02.033
Google Scholar
[71]
X. Fan et al., Electrospun reduced graphene oxide/polyacrylonitrile membrane for high-performance solar evaporation, Sol. Energy. 209 (2020) 325–333.
DOI: 10.1016/j.solener.2020.09.013
Google Scholar
[72]
E. Aliyev, V. Filiz, M. M. Khan, Y. J. Lee, C. Abetz, and V. Abetz, Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris, Nanomaterials, 9 (2019) 1180.
DOI: 10.3390/nano9081180
Google Scholar
[73]
L. A. Pérez, N. Bajales, and G. I. Lacconi, Raman spectroscopy coupled with AFM scan head: A versatile combination for tailoring graphene oxide/reduced graphene oxide hybrid materials, Appl. Surf. Sci. 495 (2019) 143539.
DOI: 10.1016/j.apsusc.2019.143539
Google Scholar
[74]
A. Y. Lee et al., Raman study of D* band in graphene oxide and its correlation with reduction, Appl. Surf. Sci. 536 (2021) 147990.
Google Scholar
[75]
R. Nayak, R. Padhye, and L. Arnold, Melt-electrospinning of nanofibers, in: Electrospun Nanofibers, Elsevier Inc., 2017, p.11–40.
DOI: 10.1016/b978-0-08-100907-9.00002-7
Google Scholar
[76]
S. Tas, O. Kaynan, E. Ozden-Yenigun, and K. Nijmeijer, Polyacrylonitrile (PAN)/crown ether composite nanofibers for the selective adsorption of cations, RSC Adv. 6 (2016) 3608–3616.
DOI: 10.1039/c5ra23214g
Google Scholar
[77]
J. Zhang, Z. Lu, M. Wu, Q. Wu, and J. Yang, Large-scale synthesis and characterization of magnetic poly(acrylic acid) nanogels via miniemulsion polymerization, RSC Adv., vol. 5, no. 72 (2015) 58889–58894.
DOI: 10.1039/c5ra09494a
Google Scholar
[78]
T. Tański, W. Matysiak, and Ł. Krzemiński, Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers, Mater. Manuf. Process. 32 (2017) 1218–1224.
DOI: 10.1080/10426914.2016.1257129
Google Scholar
[79]
S. Lei, S. Zhong, Y. Wang, Y. Tong, and L. Xu, Preparation of monodisperse reduced graphene oxide/polyacrylonitrile composite and its thermal-induced structural transformation, Mater. Lett. 161 (2015) 108–111.
DOI: 10.1016/j.matlet.2015.08.039
Google Scholar
[80]
W. Matysiak, T. Tański, W. Smok, K. Gołombek, E. Schab-Balcerzak, Effect of conductive polymers on the optical properties of electrospun polyacrylonitryle nanofibers filled by polypyrrole, polythiophene and polyaniline, Appl. Surf. Sci. 509 (2020) 145068.
DOI: 10.1016/j.apsusc.2019.145068
Google Scholar