Influence of Electrochemically Exfoliated Graphite Addition on the Dielectric Properties of Epoxy/Montmorillonite Nanocomposites

Article Preview

Abstract:

The influence of hydrophilic electrochemically exfoliated graphite (EEG) and hydrophobic reduced EEG (rEEG) on the electrical conductivity, dielectric properties, and high-frequency dielectric losses of epoxy-based composites with montmorillonite was described. It was confirmed, that the addition of EEG changes the low-temperature conduction mechanism. The electrical conductivity in composite with EEG and montmorillonite was described by correlated barrier hopping model, whereas for composites with montmorillonite and rEEG two models were used: non-overlapping small polaron tunneling and correlated barrier hopping. The addition of EEG drastically changes the activation energy of charge carriers motions from 2.68 to 0.83 eV, whereas the addition of rEEG only to 2.43 eV. Also composite with EEG was characterized by highest high-frequency dielectric losses.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 326)

Pages:

3-15

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong, Electrochemical exfoliation of graphite and production of functional graphene, Curr. Opin. Colloid Interface Sci. 20 (2015) 329–338.

DOI: 10.1016/j.cocis.2015.10.007

Google Scholar

[2] M. Galimberti, Rubber Clay Nanocomposites, Adv. Elastomers - Technol. Prop. Appl. (2012) 91–120.

Google Scholar

[3] M. Chieruzzi, A. Miliozzi, J.M. Kenny, Effects of the nanoparticles on the thermal expansion and mechanical properties of unsaturated polyester/clay nanocomposites, Compos. Part A Appl. Sci. Manuf. 45 (2013) 44–48.

DOI: 10.1016/j.compositesa.2012.09.016

Google Scholar

[4] P.G. Allison, R.D. Moser, M.Q. Chandler, O.G. Rivera, J.R. Goodwin, E.R. Gore, C.A.W. Jr, Mechanical , Thermal , and Microstructural Analysis of Polyvinyl Alcohol / Montmorillonite Nanocomposites, J. Nanomater. 2015 (2015).

DOI: 10.1155/2015/291248

Google Scholar

[5] C. Vallés, A.M. Abdelkader, R.J. Young, I. a. Kinloch, Few layer graphene–polypropylene nanocomposites: the role of flake diameter, Faraday Discuss. 44 (2014) 379–390.

DOI: 10.1039/c4fd00112e

Google Scholar

[6] J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites, Polymer (Guildf). 52 (2011) 5–25.

DOI: 10.1016/j.polymer.2010.11.042

Google Scholar

[7] N. Follain, B. Alexandre, C. Chappey, L. Colasse, P. Médéric, S. Marais, Barrier properties of polyamide 12/montmorillonite nanocomposites: Effect of clay structure and mixing conditions, Compos. Sci. Technol. 136 (2016) 18–28.

DOI: 10.1016/j.compscitech.2016.09.023

Google Scholar

[8] G. Gorrasi, M. Tortora, V. Vittoria, E. Pollet, B. Lepoittevin, M. Alexandre, P. Dubois, Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: Effect of clay dispersion, Polymer (Guildf). 44 (2003) 2271–2279.

DOI: 10.1016/s0032-3861(03)00108-3

Google Scholar

[9] G. Huang, S. Chen, H. Liang, X. Wang, J. Gao, Combination of graphene and montmorillonite reduces the flammability of poly(vinyl alcohol) nanocomposites, Appl. Clay Sci. 80–81 (2013) 433–437.

DOI: 10.1016/j.clay.2013.01.005

Google Scholar

[10] M. Yadav, S. Ahmad, Montmorillonite/graphene oxide/chitosan composite: Synthesis, characterization and properties, Int. J. Biol. Macromol. 79 (2015) 923–933.

DOI: 10.1016/j.ijbiomac.2015.05.055

Google Scholar

[11] H. Couderc, E. David, M. Frechette, S. Savoie, Dielectric properties of PA6 - Montmorillonite nanocomposites under moderate electric field, in: 2013 IEEE Electr. Insul. Conf. EIC 2013, 2013: p.291–294.

DOI: 10.1109/eic.2013.6554252

Google Scholar

[12] Rashmi, N.M. Renukappa, R. Chikkakuntappa, N.S. Kunigal, Montmorillonite nanoclay filler effects on electrical conductivity, thermal and mechanical properties of epoxy-based nanocomposites, Polym. Eng. Sci. 51 (2011) 1827–1836.

DOI: 10.1002/pen.21974

Google Scholar

[13] R.J. Sengwa, S. Choudhary, S. Sankhla, Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites, Compos. Sci. Technol. 70 (2010) 1621–1627.

DOI: 10.1016/j.compscitech.2010.06.003

Google Scholar

[14] P.-C. Ma, M.-Y. Liu, H. Zhang, S.-Q. Wang, R. Wang, K. Wang, Y.-K. Wong, B.-Z. Tang, S.-H. Hong, K.-W. Paik, J.-K. Kim, Enhanced Electrical Conductivity of Nanocomposites Containing Hybrid Fillers of Carbon Nanotubes and Carbon Black, ACS Appl. Mater. Interfaces. 1 (2009) 1090–1096.

DOI: 10.1021/am9000503

Google Scholar

[15] A.A. Khurram, S.A. Rakha, P. Zhou, M. Shafi, A. Munir, Correlation of electrical conductivity, dielectric properties, microwave absorption, and matrix properties of composites filled with graphene nanoplatelets and carbon nanotubes, J. Appl. Phys. 118 (2015) 044105.

DOI: 10.1063/1.4927617

Google Scholar

[16] H. Pang, C. Chen, Y. Bao, J. Chen, X. Ji, J. Lei, Z.M. Li, Electrically conductive carbon nanotube/ultrahigh molecular weight polyethylene composites with segregated and double percolated structure, Mater. Lett. 79 (2012) 96–99.

DOI: 10.1016/j.matlet.2012.03.111

Google Scholar

[17] W. Park, J. Hu, L.A. Jauregui, X. Ruan, Y.P. Chen, Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites, Appl. Phys. Lett. 104 (2014).

DOI: 10.1063/1.4869026

Google Scholar

[18] D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes, Int. J. Electrochem. Sci. 3 (2008) 597–608.

Google Scholar

[19] B.M. Greenhoe, M.K. Hassan, J.S. Wiggins, K.A. Mauritz, Universal power law behavior of the AC conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks, J. Polym. Sci. Part B Polym. Phys. 54 (2016) 1918–1923.

DOI: 10.1002/polb.24121

Google Scholar

[20] M. Megdiche, C. Perrin-Pellegrino, M. Gargouri, Conduction mechanism study by overlapping large-polaron tunnelling model in SrNiP2O7 ceramic compound, J. Alloys Compd. 584 (2014) 209–215.

DOI: 10.1016/j.jallcom.2013.09.021

Google Scholar

[21] A. Ladhar, M. Arous, H. Kaddami, M. Raihane, A. Kallel, M.P.F. Graça, L.C. Costa, AC and DC electrical conductivity in natural rubber/nanofibrillated cellulose nanocomposites, J. Mol. Liq. 209 (2015) 272–279.

DOI: 10.1016/j.molliq.2015.04.020

Google Scholar

[22] M. Vellakkat, D. Hundekal, Electrical conductivity and supercapacitor properties of polyaniline/chitosan/nickel oxide honeycomb nanocomposite, J. Appl. Polym. Sci. 134 (2017).

DOI: 10.1002/app.44536

Google Scholar

[23] O.G. Abdullah, Y.A.K. Salman, S.A. Saleem, Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposite films, J. Mater. Sci. Mater. Electron. 27 (2016) 3591–3598.

DOI: 10.1007/s10854-015-4196-4

Google Scholar

[24] A. Kahouli, A. Sylvestre, F. Jomni, B. Yangui, J. Legrand, Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylene C thin films, J. Phys. Chem. A. 116 (2012) 1051–1058.

DOI: 10.1021/jp207114u

Google Scholar

[25] V. Kumar, T, A.S. Chary, S. Bhardwaj, A.M. Awasthi, S.N. Reddy, Dielectric Relaxation, Ionic Conduction and Complex Impedance Studies on NaNO3 Fast Ion Conductor, Int. J. Mater. Sci. Appl. 2 (2013) 173–178.

DOI: 10.11648/j.ijmsa.20130206.12

Google Scholar

[26] I. Latif, T.B. Alwan, A.H. Al-Dujaili, Low Frequency Dielectric Study of PAPA-PVA-GR Nanocomposites, Nanosci. Nanotechnol. 2 (2012) 190–200.

DOI: 10.5923/j.nn.20120206.07

Google Scholar