Evaluation of Physicochemical and Electrochemical Properties of Surface Modified Pure Titanium Grade II

Article Preview

Abstract:

The paper contains the results of surface modification on the properties of the pure titanium Grade II, obtained by the SLM procedure. In the paper, the analysis of the results of physicochemical properties, such as pitting corrosion test and contact angle measurements and Surface Free Energy calculated were performed. Additionally, the microscopic observation with microchemical analysis, surface topography analysis using Atomic Force Microscopy, surface roughness measurements and wear test were performed too. The studies were carried out on three groups of samples in an initial state (1) (after mechanical treatment - mechanical grinding and polishing) and after surface modification by PVD method using CrN layer (2) and TiN layer (3). Based on the obtained results it can be concluded that the samples with TiN layer were characterized by the optimum properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 326)

Pages:

75-88

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.P. Kurth, Levy G., F. Klocke, T. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals, 56 (2007) 730-759. https://doi.org/10.1016/j.cirp.2007.10.004.

DOI: 10.1016/j.cirp.2007.10.004

Google Scholar

[2] S. Bose, D. Ke, H. Sahasrabudhe, and A. Bandyopadhyay, Additive manufacturing of biomaterials, Prog. Mater. Sci., 93(2018) 45–111.

DOI: 10.1016/j.pmatsci.2017.08.003

Google Scholar

[3] A. Masmoudi, R. Bolot, and C. Coddet, Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process, J. Mater. Process. Technol., 225(2015) 122–132. https://doi.org/10.1016/j.jmatprotec.2015.05.008.

DOI: 10.1016/j.jmatprotec.2015.05.008

Google Scholar

[4] B. Wysocki, P. Maj, A. Krawczyński, K. Różniatowski, J. Zdunek, K.J. Kurzydłowski, W. Święszkowski, Microstructure and mechanical properties of investigation of CP titanium processed by Selective Laser Melting (SLM), J. Master. Process. Technol, 214(2017) 12-23. https://doi.org/10.1016/j.jmatprotec.2016.10.022.

DOI: 10.1016/j.jmatprotec.2016.10.022

Google Scholar

[5] R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, W. Jiang, Denis cation behavior of gas and water atomized 316L stainless steel powder during selective laser melting, Appl. Surf. Sci. 256(2010) 4350-4356. https://doi.org/ 10.1016/j.apsusc.2010.02.030.

DOI: 10.1016/j.apsusc.2010.02.030

Google Scholar

[6] A. Woźniak, B. Ziębowicz, A. Ziębowicz, W. Walke W, Physicochemical properties of oxide ZrO2 layer deposited by sol-gel method on Ti-6Al-7Nb alloy, Arch. Metall. Master., 63(2018) 1209-1215.

Google Scholar

[7] A. Ziębowicz, A. Woźniak, B. Ziębowicz, K. Kosiel, G. Chladek, The effect of atomic layer deposition of ZrO2 on the physicochemical properties of cobalt based alloys intended for prosthetic dentistry, Arch. Metall. Master., 63(2018) 1077-1082.

Google Scholar

[8] Gebhardt, A.; Hötter, J.-S. Additive manufacturing: 3D printing for prototyping and manufacturing; ISBN 9781569905821.

DOI: 10.3139/9781569905838

Google Scholar

[9] Duda, T.; Raghavan, L.V. 3D Metal Printing Technology. IFAC-PapersOnLine, 49(2016), 103–110.

DOI: 10.1016/j.ifacol.2016.11.111

Google Scholar

[10] Masmoudi, A.; Bolot, R.; Coddet, C. Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process. J. Mater. Process. Technol., 225(2015), 122–132.

DOI: 10.1016/j.jmatprotec.2015.05.008

Google Scholar

[11] Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive manufacturing of biomaterials. Prog. Mater. Sci., 93(2018), 45–111.

DOI: 10.1016/j.pmatsci.2017.08.003

Google Scholar

[12] Whitaker, M. The history of 3D printing in healthcare. Bull. R. Coll. Surg. Engl., 96(2014), 228–229.

Google Scholar

[13] Liverani, E.; Fortunato, A.; Leardini, A.; Belvedere, C.; Siegler, S.; Ceschini, L.; Ascari, A. Fabrication of Co–Cr–Mo endoprosthetic ankle devices by means of Selective Laser Melting (SLM). Mater. Des., 106(2016), 60–68.

DOI: 10.1016/j.matdes.2016.05.083

Google Scholar

[14] Demir, A.G.; Previtali, B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting. Mater. Des., 119(2017), 338–350.

DOI: 10.1016/j.matdes.2017.01.091

Google Scholar

[15] Bandyopadhyay, A.; Heer, B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Reports, 129(2018), 1–16.

Google Scholar

[16] Liu, F.-H.; Shen, Y.-K.; Lee, J.-L. Selective laser sintering of a hydroxyapatite-silica scaffold on cultured MG63 osteoblasts in vitro. Int. J. Precis. Eng. Manuf. 13, 439–444 (2012). https://doi.org/10.1007/s12541-012-0056-9.

DOI: 10.1007/s12541-012-0056-9

Google Scholar

[17] Inzana, J.A.; Olvera, D.; Fuller, S.M.; Kelly, J.P.; Graeve, O.A.; Schwarz, E.M.; Kates, S.L.; Awad, H.A. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials, 35(2014), 4026–4034.

DOI: 10.1016/j.biomaterials.2014.01.064

Google Scholar

[18] Ardila, L.C.; Garciandia, F.; González-díaz, J.B.; Álvarez, P.; Echeverria, A. Effect of IN718 recycled powder reuse on properties of parts manufactured by means of Selective Laser Melting. Phys. Procedia, 56(2014), 99–107.

DOI: 10.1016/j.phpro.2014.08.152

Google Scholar

[19] Khan, M.A.; Williams, R.L.; Williams, D.F. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials, 20(1999), 631–637. https://doi.org/10.1016/s0142-9612(98)00217-8.

DOI: 10.1016/s0142-9612(98)00217-8

Google Scholar

[20] Carbonaro, R.F.; Gray, B.N.; Whitehead, C.F.; Stone, A.T. Carboxylate-containing chelating agent interactions with amorphous chromium hydroxide: Adsorption and dissolution. Geochim. Cosmochim. Acta, 72(2008), 3241–3257.

DOI: 10.1016/j.gca.2008.04.010

Google Scholar

[21] Zhang, Y.; Addison, O.; Yu, F.; Troconis, B.C.R.; Scully, J.R.; Davenport, A.J. Time-dependent Enhanced Corrosion of Ti6Al4V in the Presence of H2O2 and Albumin. Sci. Rep., 8(2018). https://doi.org/10.1038/s41598-018-21332-x.

DOI: 10.1038/s41598-018-21332-x

Google Scholar

[22] T akemoto, S.; Hattori, M.; Yoshinari, M.; Kawada, E.; Oda, Y. Discoloration of titanium alloy in acidic saline solutions with peroxide. Dent. Mater. J., 32(2013), 19–24. https://doi.org/10.4012/dmj.2012-194.

DOI: 10.4012/dmj.2012-194

Google Scholar

[23] Karimi, S.; Nickchi, T.; Alfantazi, A.M. Long-term corrosion investigation of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in simulated body solutions. Appl. Surf. Sci., 258(2012), 6087–6096.

DOI: 10.1016/j.apsusc.2012.03.008

Google Scholar

[24] Karimi, S.; Alfantazi, A.M. Electrochemical corrosion behavior of orthopedic biomaterials in presence of human serum albumin. J. Electrochem. Soc., 160(2013). https://doi.org/10.1149/2.052306jes.

DOI: 10.1149/2.052306jes

Google Scholar

[25] Yu, F.; Addison, O.; Davenport, A.J. A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V. Acta Biomater., 26(2015), 355–365.

DOI: 10.1016/j.actbio.2015.07.046

Google Scholar

[26] Mabilleau, G.; Bourdon, S.; Joly-Guillou, M.L.; Filmon, R.; Baslé, M.F.; Chappard, D. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomater., 2(2006), 121–129.

DOI: 10.1016/j.actbio.2005.09.004

Google Scholar

[27] Fonseca, C.; Barbosa, M.A. Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy. Corros. Sci., 43(2001), 547–559. https://doi.org/10.1016/S0010-938X(00)00107-4.

DOI: 10.1016/s0010-938x(00)00107-4

Google Scholar

[28] Al-Mobarak, N.A.; Al-Mayouf, A.M.; Al-Swayih, A.A. The effect of hydrogen peroxide on the electrochemical behavior of Ti and some of its alloys for dental applications. Mater. Chem. Phys., 99(2006), 333–340.

DOI: 10.1016/j.matchemphys.2005.10.032

Google Scholar