[1]
J.P. Kurth, Levy G., F. Klocke, T. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals, 56 (2007) 730-759. https://doi.org/10.1016/j.cirp.2007.10.004.
DOI: 10.1016/j.cirp.2007.10.004
Google Scholar
[2]
S. Bose, D. Ke, H. Sahasrabudhe, and A. Bandyopadhyay, Additive manufacturing of biomaterials, Prog. Mater. Sci., 93(2018) 45–111.
DOI: 10.1016/j.pmatsci.2017.08.003
Google Scholar
[3]
A. Masmoudi, R. Bolot, and C. Coddet, Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process, J. Mater. Process. Technol., 225(2015) 122–132. https://doi.org/10.1016/j.jmatprotec.2015.05.008.
DOI: 10.1016/j.jmatprotec.2015.05.008
Google Scholar
[4]
B. Wysocki, P. Maj, A. Krawczyński, K. Różniatowski, J. Zdunek, K.J. Kurzydłowski, W. Święszkowski, Microstructure and mechanical properties of investigation of CP titanium processed by Selective Laser Melting (SLM), J. Master. Process. Technol, 214(2017) 12-23. https://doi.org/10.1016/j.jmatprotec.2016.10.022.
DOI: 10.1016/j.jmatprotec.2016.10.022
Google Scholar
[5]
R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, W. Jiang, Denis cation behavior of gas and water atomized 316L stainless steel powder during selective laser melting, Appl. Surf. Sci. 256(2010) 4350-4356. https://doi.org/ 10.1016/j.apsusc.2010.02.030.
DOI: 10.1016/j.apsusc.2010.02.030
Google Scholar
[6]
A. Woźniak, B. Ziębowicz, A. Ziębowicz, W. Walke W, Physicochemical properties of oxide ZrO2 layer deposited by sol-gel method on Ti-6Al-7Nb alloy, Arch. Metall. Master., 63(2018) 1209-1215.
Google Scholar
[7]
A. Ziębowicz, A. Woźniak, B. Ziębowicz, K. Kosiel, G. Chladek, The effect of atomic layer deposition of ZrO2 on the physicochemical properties of cobalt based alloys intended for prosthetic dentistry, Arch. Metall. Master., 63(2018) 1077-1082.
Google Scholar
[8]
Gebhardt, A.; Hötter, J.-S. Additive manufacturing: 3D printing for prototyping and manufacturing; ISBN 9781569905821.
DOI: 10.3139/9781569905838
Google Scholar
[9]
Duda, T.; Raghavan, L.V. 3D Metal Printing Technology. IFAC-PapersOnLine, 49(2016), 103–110.
DOI: 10.1016/j.ifacol.2016.11.111
Google Scholar
[10]
Masmoudi, A.; Bolot, R.; Coddet, C. Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process. J. Mater. Process. Technol., 225(2015), 122–132.
DOI: 10.1016/j.jmatprotec.2015.05.008
Google Scholar
[11]
Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive manufacturing of biomaterials. Prog. Mater. Sci., 93(2018), 45–111.
DOI: 10.1016/j.pmatsci.2017.08.003
Google Scholar
[12]
Whitaker, M. The history of 3D printing in healthcare. Bull. R. Coll. Surg. Engl., 96(2014), 228–229.
Google Scholar
[13]
Liverani, E.; Fortunato, A.; Leardini, A.; Belvedere, C.; Siegler, S.; Ceschini, L.; Ascari, A. Fabrication of Co–Cr–Mo endoprosthetic ankle devices by means of Selective Laser Melting (SLM). Mater. Des., 106(2016), 60–68.
DOI: 10.1016/j.matdes.2016.05.083
Google Scholar
[14]
Demir, A.G.; Previtali, B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting. Mater. Des., 119(2017), 338–350.
DOI: 10.1016/j.matdes.2017.01.091
Google Scholar
[15]
Bandyopadhyay, A.; Heer, B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Reports, 129(2018), 1–16.
Google Scholar
[16]
Liu, F.-H.; Shen, Y.-K.; Lee, J.-L. Selective laser sintering of a hydroxyapatite-silica scaffold on cultured MG63 osteoblasts in vitro. Int. J. Precis. Eng. Manuf. 13, 439–444 (2012). https://doi.org/10.1007/s12541-012-0056-9.
DOI: 10.1007/s12541-012-0056-9
Google Scholar
[17]
Inzana, J.A.; Olvera, D.; Fuller, S.M.; Kelly, J.P.; Graeve, O.A.; Schwarz, E.M.; Kates, S.L.; Awad, H.A. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials, 35(2014), 4026–4034.
DOI: 10.1016/j.biomaterials.2014.01.064
Google Scholar
[18]
Ardila, L.C.; Garciandia, F.; González-díaz, J.B.; Álvarez, P.; Echeverria, A. Effect of IN718 recycled powder reuse on properties of parts manufactured by means of Selective Laser Melting. Phys. Procedia, 56(2014), 99–107.
DOI: 10.1016/j.phpro.2014.08.152
Google Scholar
[19]
Khan, M.A.; Williams, R.L.; Williams, D.F. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials, 20(1999), 631–637. https://doi.org/10.1016/s0142-9612(98)00217-8.
DOI: 10.1016/s0142-9612(98)00217-8
Google Scholar
[20]
Carbonaro, R.F.; Gray, B.N.; Whitehead, C.F.; Stone, A.T. Carboxylate-containing chelating agent interactions with amorphous chromium hydroxide: Adsorption and dissolution. Geochim. Cosmochim. Acta, 72(2008), 3241–3257.
DOI: 10.1016/j.gca.2008.04.010
Google Scholar
[21]
Zhang, Y.; Addison, O.; Yu, F.; Troconis, B.C.R.; Scully, J.R.; Davenport, A.J. Time-dependent Enhanced Corrosion of Ti6Al4V in the Presence of H2O2 and Albumin. Sci. Rep., 8(2018). https://doi.org/10.1038/s41598-018-21332-x.
DOI: 10.1038/s41598-018-21332-x
Google Scholar
[22]
T akemoto, S.; Hattori, M.; Yoshinari, M.; Kawada, E.; Oda, Y. Discoloration of titanium alloy in acidic saline solutions with peroxide. Dent. Mater. J., 32(2013), 19–24. https://doi.org/10.4012/dmj.2012-194.
DOI: 10.4012/dmj.2012-194
Google Scholar
[23]
Karimi, S.; Nickchi, T.; Alfantazi, A.M. Long-term corrosion investigation of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in simulated body solutions. Appl. Surf. Sci., 258(2012), 6087–6096.
DOI: 10.1016/j.apsusc.2012.03.008
Google Scholar
[24]
Karimi, S.; Alfantazi, A.M. Electrochemical corrosion behavior of orthopedic biomaterials in presence of human serum albumin. J. Electrochem. Soc., 160(2013). https://doi.org/10.1149/2.052306jes.
DOI: 10.1149/2.052306jes
Google Scholar
[25]
Yu, F.; Addison, O.; Davenport, A.J. A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V. Acta Biomater., 26(2015), 355–365.
DOI: 10.1016/j.actbio.2015.07.046
Google Scholar
[26]
Mabilleau, G.; Bourdon, S.; Joly-Guillou, M.L.; Filmon, R.; Baslé, M.F.; Chappard, D. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomater., 2(2006), 121–129.
DOI: 10.1016/j.actbio.2005.09.004
Google Scholar
[27]
Fonseca, C.; Barbosa, M.A. Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy. Corros. Sci., 43(2001), 547–559. https://doi.org/10.1016/S0010-938X(00)00107-4.
DOI: 10.1016/s0010-938x(00)00107-4
Google Scholar
[28]
Al-Mobarak, N.A.; Al-Mayouf, A.M.; Al-Swayih, A.A. The effect of hydrogen peroxide on the electrochemical behavior of Ti and some of its alloys for dental applications. Mater. Chem. Phys., 99(2006), 333–340.
DOI: 10.1016/j.matchemphys.2005.10.032
Google Scholar