Effect of the Nanostructures Addition on TiO2 Photoanode and DSSC Properties

Article Preview

Abstract:

Photoelectrodes are key components of the dye-sensitized solar cells (DSSCs), and as such improving their properties, may lead to an overall improvement of the entire cell.This paper aims to fabricate and compare the properties of various photoanodes (resulting in DSSCs) to determine how the overall efficiency of the cell is affected by various additives mixed into the TiO2 paste deposited on fluorine-doped tin oxide (FTO) covered glass, thus changing the photoanode composition. The TiO2 paste has been previously mixed with various materials such as ZnO, SiO2, Pd, and carbon nanotubes (CNTs). Basing on the prepared photoanodes, DSSCs have been prepared and analyzed by UV-Vis spectroscopy and atomic force microscopy. Moreover, were tested on a SS I-V CT-02 laboratory stand equipped with a Photo Emission Tech SS150AAA solar radiation simulator and Keithley 2401 low-voltage multimeter. The test results allowed for a determination of their properties and comparison. The highest efficiency has been obtained for the DSSCs based on photoanodes with TiO2 (1.58%) and TiO2/ZnO (1.52%).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 326)

Pages:

89-99

Citation:

Online since:

November 2021

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z. Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 2015, 18, 155–162.

DOI: 10.1016/j.mattod.2014.09.001

Google Scholar

[2] Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3.

DOI: 10.1080/23311916.2016.1167990

Google Scholar

[3] Skoczkowski, T.; Bielecki, S.; Węglarz, A.; Włodarczak, M.; Gutowski, P. Impact assessment of climate policy on Poland's power sector. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 1303–1349.

DOI: 10.1007/s11027-018-9786-z

Google Scholar

[4] Ministry of Energy Extract from the draft of Energy of Poland until 2040 (EPP2040); 2018; Vol. (2040).

Google Scholar

[5] International Energy Agency (IEA) Global Energy and CO2 Status Report; (2019).

Google Scholar

[6] United Nations UN Climate Change Summit 2019; 2019; ISBN 9789292191849.

Google Scholar

[7] Grätzel, M. The advent of mesoscopic injection solar cells. Prog. Photovoltaics Res. Appl. 2006, 14, 429–442.

DOI: 10.1002/pip.712

Google Scholar

[8] Wang, Y.F.; Wang, X.; Li, X.F.; Li, D.J. Dye-sensitized solar cells based on a 1D/3D double-layered ZnO photoanode with improved photovoltaic performance. RSC Adv. 2015, 5, 81253–81259.

DOI: 10.1039/c5ra11257e

Google Scholar

[9] Boschloo, G.; Hagfeldt, A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 2009, 42, 1819–1826.

DOI: 10.1021/ar900138m

Google Scholar

[10] Mao, X.; Zhou, R.; Zhang, S.; Ding, L.; Wan, L.; Qin, S.; Chen, Z.; Xu, J.; Miao, S. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals. Sci. Rep. 2016, 6, 19390–19390.

DOI: 10.1038/srep19390

Google Scholar

[11] Musztyfaga-Staszuk, M.; Janicki, D.; Panek, P. Correlation of Different Electrical Parameters of Solar Cells with Silver Front Electrodes. Materials (Basel). 2019, 12, 366.

DOI: 10.3390/ma12030366

Google Scholar

[12] Raj, C.C.; Prasanth, R. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power Sources 2016, 317, 120–132.

DOI: 10.1016/j.jpowsour.2016.03.016

Google Scholar

[13] Sharma, K.; Sharma, V.; Sharma, S.S. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13.

DOI: 10.1186/s11671-018-2760-6

Google Scholar

[14] Qiu, J.; Guo, M.; Wang, X. Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2011, 3, 2358–2367.

DOI: 10.1021/am2002789

Google Scholar

[15] Pang, A.; Sun, X.; Ruan, H.; Li, Y.; Dai, S.; Wei, M. Highly efficient dye-sensitized solar cells composed of TiO2@SnO2 core-shell microspheres. Nano Energy 2014, 5, 82–90.

DOI: 10.1016/j.nanoen.2014.02.007

Google Scholar

[16] Chen, C.; Li, Y.; Sun, X.; Xie, F.; Wei, M. Efficiency enhanced dye-sensitized Zn2SnO4 solar cells using a facile chemical-bath deposition method. New J. Chem. 2014, 38, 4465–4470.

DOI: 10.1039/c4nj00729h

Google Scholar

[17] Trześniewski, B.J.; Smith, W.A. Photocharged BiVO4 photoanodes for improved solar water splitting. J. Mater. Chem. A 2016, 4, 2919–2926.

DOI: 10.1039/c5ta04716a

Google Scholar

[18] Li, Y.; Zhu, J.; Chu, H.; Wei, J.; Liu, F.; Lv, M.; Tang, J.; Zhang, B.; Yao, J.; Huo, Z.; et al. BiVO4 semiconductor sensitized solar cells. Sci. China Chem. 2015, 58, 1489–1493.

DOI: 10.1007/s11426-015-5348-3

Google Scholar

[19] Vittal, R.; Ho, K.C. Zinc oxide based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2017, 70, 920–935.

DOI: 10.1016/j.rser.2016.11.273

Google Scholar

[20] Keis, K.; Lindgren, J.; Lindquist, S.E.; Hagfeldt, A. Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir 2000, 16, 4688–4694.

DOI: 10.1021/la9912702

Google Scholar

[21] Horiuchi, H.; Katoh, R.; Hara, K.; Yanagida, M.; Murata, S.; Arakawa, H.; Tachiya, M. Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation. J. Phys. Chem. B 2003, 107, 2570–2574.

DOI: 10.1021/jp0220027

Google Scholar

[22] Musyaro'Ah; Huda, I.; Indayani, W.; Gunawan, B.; Yudhoyono, G.; Endarko Fabrication and characterization dye sensitized solar cell (DSSC) based on TiO2/SnO2 composite. In Proceedings of the AIP Conference Proceedings; American Institute of Physics Inc., 2017; Vol. 1788.

DOI: 10.1063/1.4968315

Google Scholar

[23] Basu, K.; Benetti, D.; Zhao, H.; Jin, L.; Vetrone, F.; Vomiero, A.; Rosei, F. Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes. Sci. Rep. 2016, 6, 1–10.

DOI: 10.1038/srep23312

Google Scholar

[24] Dong, H.Y.; Sun, Q.H.; Zhang, T.T.; Ren, Q.; Ma, W. Synthesis and photocatalytic activity of ag doped TiO2 nanofibers. In Proceedings of the Materials Science Forum; Trans Tech Publications Ltd, 2018; Vol. 913, p.1027–1032.

DOI: 10.4028/www.scientific.net/msf.913.1027

Google Scholar

[25] Sinha, D.; De, D.; Goswami, D.; Ayaz, A. Fabrication of DSSC with Nanostructured ZnO Photo Anode and Natural Dye Sensitizer. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd, 2018; Vol. 5, p.2056–(2063).

DOI: 10.1016/j.matpr.2017.09.201

Google Scholar

[26] Chang, H.; Hsieh, T.J.; Chen, T.L.; Huang, K.D.; Jwo, C.S.; Chien, S.H. Dye-sensitized solar cells made with TiO2-coated multi-wall carbon nanotubes and natural dyes extracted from ipomoea. Mater. Trans. 2009, 50, 2879–2884.

DOI: 10.2320/matertrans.m2009203

Google Scholar

[27] Hernández-Martínez, A.R.; Estevez, M.; Vargas, S.; Quintanilla, F.; Rodríguez, R. Natural pigment-based dye-sensitized solar cells. J. Appl. Res. Technol. 2012, 10, 38–47.

DOI: 10.22201/icat.16656423.2012.10.1.419

Google Scholar

[28] Clifford, J.N.; Planells, M.; Palomares, E. Advances in high efficiency dye sensitized solar cells based on Ru(ii) free sensitizers and a liquid redox electrolyte. J. Mater. Chem. 2012, 22, 24195–24201.

DOI: 10.1039/c2jm34289h

Google Scholar

[29] Dou, X.; Sabba, D.; Mathews, N.; Wong, L.H.; Lam, Y.M.; Mhaisalkar, S. Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-sensitized solar cells. Chem. Mater. 2011, 23, 3938–3945.

DOI: 10.1021/cm201366z

Google Scholar

[30] Umale, S. V.; Tambat, S.N.; Sudhakar, V.; Sontakke, S.M.; Krishnamoorthy, K. Fabrication, characterization and comparison of DSSC using anatase TiO2 synthesized by various methods. Adv. Powder Technol. 2017, 28, 2859–2864.

DOI: 10.1016/j.apt.2017.08.012

Google Scholar

[31] Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. 2010, 6595–6663.

DOI: 10.1021/cr900356p

Google Scholar

[32] Someswararao, M. V; Dubey, R.S.; Subbarao, P.S. V; Singh, S. Electrospinning process parameters dependent investigation of TiO 2 nanofibers. (2018).

DOI: 10.1016/j.rinp.2018.08.054

Google Scholar

[33] Cavallo, C.; Di Pascasio, F.; Latini, A.; Bonomo, M.; Dini, D. Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells. J. Nanomater. 2017, (2017).

DOI: 10.1155/2017/5323164

Google Scholar

[34] Flahaut, E.; Peigney, A.; Laurent, C.; Marlière, C.; Chastel, F.; Rousset, A. Carbon nanotube-metal-oxide nanocomposites: Microstructure, electrical conductivity and mechanical properties. Acta Mater. 2000, 48, 3803–3812.

DOI: 10.1016/s1359-6454(00)00147-6

Google Scholar

[35] F. Shaikh, S.; M. Shinde, N.; Lee, D.; M. Al-Enizi, A.; Ho Kim, K.; S. Mane, R. Nanostructures in Dye-Sensitized and Perovskite Solar Cells. In Nanostructures; IntechOpen, (2020).

DOI: 10.5772/intechopen.83803

Google Scholar

[36] Basak, A.; Deka, H.; Mondal, A.; Singh, U.P. Impact of post-deposition annealing in Cu 2 SnS 3 thin film solar cells prepared by doctor blade method. (2018).

DOI: 10.1016/j.vacuum.2018.07.049

Google Scholar

[37] Kochuveedu, S.T.; Kim, D.P.; Kim, D.H. Surface-plasmon-induced visible light photocatalytic activity of TiO 2 nanospheres decorated by au nanoparticles with controlled configuration. J. Phys. Chem. C 2012, 116, 2500–2506.

DOI: 10.1021/jp209520m

Google Scholar

[38] Tański, T.; Jarka, P.; Szindler, M.; Drygała, A.; Matysiak, W.; Libera, M. Study of dye sensitized solar cells photoelectrodes consisting of nanostructures. Appl. Surf. Sci. 2019, 491, 807–813.

DOI: 10.1016/j.apsusc.2019.04.274

Google Scholar

[39] Choi, H.; Mai, C.; Kim, H.; Jeong, J.; Song, S.; Bazan, G.; Young Kim, J.; J Heeger, A. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells; 2015; Vol. 6.

DOI: 10.1038/ncomms8348

Google Scholar

[40] Tsai, J.K.; Hsu, W.D.; Wu, T.C.; Meen, T.H.; Chong, W.J. Effect of compressed tio2 nanoparticle thin film thickness on the performance of dye-sensitized solar cells. Nanoscale Res. Lett. 2013, 8, 459.

DOI: 10.1186/1556-276x-8-459

Google Scholar