[1]
Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z. Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 2015, 18, 155–162.
DOI: 10.1016/j.mattod.2014.09.001
Google Scholar
[2]
Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3.
DOI: 10.1080/23311916.2016.1167990
Google Scholar
[3]
Skoczkowski, T.; Bielecki, S.; Węglarz, A.; Włodarczak, M.; Gutowski, P. Impact assessment of climate policy on Poland's power sector. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 1303–1349.
DOI: 10.1007/s11027-018-9786-z
Google Scholar
[4]
Ministry of Energy Extract from the draft of Energy of Poland until 2040 (EPP2040); 2018; Vol. (2040).
Google Scholar
[5]
International Energy Agency (IEA) Global Energy and CO2 Status Report; (2019).
Google Scholar
[6]
United Nations UN Climate Change Summit 2019; 2019; ISBN 9789292191849.
Google Scholar
[7]
Grätzel, M. The advent of mesoscopic injection solar cells. Prog. Photovoltaics Res. Appl. 2006, 14, 429–442.
DOI: 10.1002/pip.712
Google Scholar
[8]
Wang, Y.F.; Wang, X.; Li, X.F.; Li, D.J. Dye-sensitized solar cells based on a 1D/3D double-layered ZnO photoanode with improved photovoltaic performance. RSC Adv. 2015, 5, 81253–81259.
DOI: 10.1039/c5ra11257e
Google Scholar
[9]
Boschloo, G.; Hagfeldt, A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 2009, 42, 1819–1826.
DOI: 10.1021/ar900138m
Google Scholar
[10]
Mao, X.; Zhou, R.; Zhang, S.; Ding, L.; Wan, L.; Qin, S.; Chen, Z.; Xu, J.; Miao, S. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals. Sci. Rep. 2016, 6, 19390–19390.
DOI: 10.1038/srep19390
Google Scholar
[11]
Musztyfaga-Staszuk, M.; Janicki, D.; Panek, P. Correlation of Different Electrical Parameters of Solar Cells with Silver Front Electrodes. Materials (Basel). 2019, 12, 366.
DOI: 10.3390/ma12030366
Google Scholar
[12]
Raj, C.C.; Prasanth, R. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power Sources 2016, 317, 120–132.
DOI: 10.1016/j.jpowsour.2016.03.016
Google Scholar
[13]
Sharma, K.; Sharma, V.; Sharma, S.S. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13.
DOI: 10.1186/s11671-018-2760-6
Google Scholar
[14]
Qiu, J.; Guo, M.; Wang, X. Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2011, 3, 2358–2367.
DOI: 10.1021/am2002789
Google Scholar
[15]
Pang, A.; Sun, X.; Ruan, H.; Li, Y.; Dai, S.; Wei, M. Highly efficient dye-sensitized solar cells composed of TiO2@SnO2 core-shell microspheres. Nano Energy 2014, 5, 82–90.
DOI: 10.1016/j.nanoen.2014.02.007
Google Scholar
[16]
Chen, C.; Li, Y.; Sun, X.; Xie, F.; Wei, M. Efficiency enhanced dye-sensitized Zn2SnO4 solar cells using a facile chemical-bath deposition method. New J. Chem. 2014, 38, 4465–4470.
DOI: 10.1039/c4nj00729h
Google Scholar
[17]
Trześniewski, B.J.; Smith, W.A. Photocharged BiVO4 photoanodes for improved solar water splitting. J. Mater. Chem. A 2016, 4, 2919–2926.
DOI: 10.1039/c5ta04716a
Google Scholar
[18]
Li, Y.; Zhu, J.; Chu, H.; Wei, J.; Liu, F.; Lv, M.; Tang, J.; Zhang, B.; Yao, J.; Huo, Z.; et al. BiVO4 semiconductor sensitized solar cells. Sci. China Chem. 2015, 58, 1489–1493.
DOI: 10.1007/s11426-015-5348-3
Google Scholar
[19]
Vittal, R.; Ho, K.C. Zinc oxide based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2017, 70, 920–935.
DOI: 10.1016/j.rser.2016.11.273
Google Scholar
[20]
Keis, K.; Lindgren, J.; Lindquist, S.E.; Hagfeldt, A. Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir 2000, 16, 4688–4694.
DOI: 10.1021/la9912702
Google Scholar
[21]
Horiuchi, H.; Katoh, R.; Hara, K.; Yanagida, M.; Murata, S.; Arakawa, H.; Tachiya, M. Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation. J. Phys. Chem. B 2003, 107, 2570–2574.
DOI: 10.1021/jp0220027
Google Scholar
[22]
Musyaro'Ah; Huda, I.; Indayani, W.; Gunawan, B.; Yudhoyono, G.; Endarko Fabrication and characterization dye sensitized solar cell (DSSC) based on TiO2/SnO2 composite. In Proceedings of the AIP Conference Proceedings; American Institute of Physics Inc., 2017; Vol. 1788.
DOI: 10.1063/1.4968315
Google Scholar
[23]
Basu, K.; Benetti, D.; Zhao, H.; Jin, L.; Vetrone, F.; Vomiero, A.; Rosei, F. Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes. Sci. Rep. 2016, 6, 1–10.
DOI: 10.1038/srep23312
Google Scholar
[24]
Dong, H.Y.; Sun, Q.H.; Zhang, T.T.; Ren, Q.; Ma, W. Synthesis and photocatalytic activity of ag doped TiO2 nanofibers. In Proceedings of the Materials Science Forum; Trans Tech Publications Ltd, 2018; Vol. 913, p.1027–1032.
DOI: 10.4028/www.scientific.net/msf.913.1027
Google Scholar
[25]
Sinha, D.; De, D.; Goswami, D.; Ayaz, A. Fabrication of DSSC with Nanostructured ZnO Photo Anode and Natural Dye Sensitizer. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd, 2018; Vol. 5, p.2056–(2063).
DOI: 10.1016/j.matpr.2017.09.201
Google Scholar
[26]
Chang, H.; Hsieh, T.J.; Chen, T.L.; Huang, K.D.; Jwo, C.S.; Chien, S.H. Dye-sensitized solar cells made with TiO2-coated multi-wall carbon nanotubes and natural dyes extracted from ipomoea. Mater. Trans. 2009, 50, 2879–2884.
DOI: 10.2320/matertrans.m2009203
Google Scholar
[27]
Hernández-Martínez, A.R.; Estevez, M.; Vargas, S.; Quintanilla, F.; Rodríguez, R. Natural pigment-based dye-sensitized solar cells. J. Appl. Res. Technol. 2012, 10, 38–47.
DOI: 10.22201/icat.16656423.2012.10.1.419
Google Scholar
[28]
Clifford, J.N.; Planells, M.; Palomares, E. Advances in high efficiency dye sensitized solar cells based on Ru(ii) free sensitizers and a liquid redox electrolyte. J. Mater. Chem. 2012, 22, 24195–24201.
DOI: 10.1039/c2jm34289h
Google Scholar
[29]
Dou, X.; Sabba, D.; Mathews, N.; Wong, L.H.; Lam, Y.M.; Mhaisalkar, S. Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-sensitized solar cells. Chem. Mater. 2011, 23, 3938–3945.
DOI: 10.1021/cm201366z
Google Scholar
[30]
Umale, S. V.; Tambat, S.N.; Sudhakar, V.; Sontakke, S.M.; Krishnamoorthy, K. Fabrication, characterization and comparison of DSSC using anatase TiO2 synthesized by various methods. Adv. Powder Technol. 2017, 28, 2859–2864.
DOI: 10.1016/j.apt.2017.08.012
Google Scholar
[31]
Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. 2010, 6595–6663.
DOI: 10.1021/cr900356p
Google Scholar
[32]
Someswararao, M. V; Dubey, R.S.; Subbarao, P.S. V; Singh, S. Electrospinning process parameters dependent investigation of TiO 2 nanofibers. (2018).
DOI: 10.1016/j.rinp.2018.08.054
Google Scholar
[33]
Cavallo, C.; Di Pascasio, F.; Latini, A.; Bonomo, M.; Dini, D. Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells. J. Nanomater. 2017, (2017).
DOI: 10.1155/2017/5323164
Google Scholar
[34]
Flahaut, E.; Peigney, A.; Laurent, C.; Marlière, C.; Chastel, F.; Rousset, A. Carbon nanotube-metal-oxide nanocomposites: Microstructure, electrical conductivity and mechanical properties. Acta Mater. 2000, 48, 3803–3812.
DOI: 10.1016/s1359-6454(00)00147-6
Google Scholar
[35]
F. Shaikh, S.; M. Shinde, N.; Lee, D.; M. Al-Enizi, A.; Ho Kim, K.; S. Mane, R. Nanostructures in Dye-Sensitized and Perovskite Solar Cells. In Nanostructures; IntechOpen, (2020).
DOI: 10.5772/intechopen.83803
Google Scholar
[36]
Basak, A.; Deka, H.; Mondal, A.; Singh, U.P. Impact of post-deposition annealing in Cu 2 SnS 3 thin film solar cells prepared by doctor blade method. (2018).
DOI: 10.1016/j.vacuum.2018.07.049
Google Scholar
[37]
Kochuveedu, S.T.; Kim, D.P.; Kim, D.H. Surface-plasmon-induced visible light photocatalytic activity of TiO 2 nanospheres decorated by au nanoparticles with controlled configuration. J. Phys. Chem. C 2012, 116, 2500–2506.
DOI: 10.1021/jp209520m
Google Scholar
[38]
Tański, T.; Jarka, P.; Szindler, M.; Drygała, A.; Matysiak, W.; Libera, M. Study of dye sensitized solar cells photoelectrodes consisting of nanostructures. Appl. Surf. Sci. 2019, 491, 807–813.
DOI: 10.1016/j.apsusc.2019.04.274
Google Scholar
[39]
Choi, H.; Mai, C.; Kim, H.; Jeong, J.; Song, S.; Bazan, G.; Young Kim, J.; J Heeger, A. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells; 2015; Vol. 6.
DOI: 10.1038/ncomms8348
Google Scholar
[40]
Tsai, J.K.; Hsu, W.D.; Wu, T.C.; Meen, T.H.; Chong, W.J. Effect of compressed tio2 nanoparticle thin film thickness on the performance of dye-sensitized solar cells. Nanoscale Res. Lett. 2013, 8, 459.
DOI: 10.1186/1556-276x-8-459
Google Scholar