[1]
Zhong H, Rometsch L, Cao Y, Estrin Y. The influence of Mg/Si ratio and Cu content on the stretch formability of 6xxx aluminum alloys. Mater Sci Eng A. 2016;651:688-697.
DOI: 10.1016/j.msea.2015.11.016
Google Scholar
[2]
Wang HY, Chen L; Li, XR, Wang JG; Jiang Q.C. Heterogeneous nucleation of Mg2Si on Sr11Sb10 nucleus in Mg–x(3.5, 5 wt %)Si–1Al alloys. Mater Chem Phys. 2012;135:358–364.
DOI: 10.1016/j.matchemphys.2012.04.058
Google Scholar
[3]
Snopińśki P, Tański T, Matus K, Rusz S. Microstructure, grain refinement and hardness of Al–3%Mg aluminium alloy processed by ECAP with helical die. Arch Civ Mech Eng. 2019;19:287–296.
DOI: 10.1016/j.acme.2018.11.003
Google Scholar
[4]
Snopiński P, Król M, Microstructure, Mechanical Properties and Strengthening Mechanism Analysis in an AlMg5 Aluminium Alloy Processed by ECAP and Subsequent Ageing. Metals. 2018; 8: 969.
DOI: 10.3390/met8110969
Google Scholar
[5]
Malekan A, Emamy M, Rassizadehghani J, Emami AR. The effect of solution temperature on the microstructure and tensile properties of Al–15%Mg2Si composite. Mater Des. 2011;5:2701-9.
DOI: 10.1016/j.matdes.2011.01.020
Google Scholar
[6]
Qin QD, Zhao YG. Nonfaceted growth of intermetallic Mg2Si in Al melt during rapid solidification. J Alloy Compd. 2008;462:28–31.
DOI: 10.1016/j.jallcom.2007.08.037
Google Scholar
[7]
Qin QD, Zhao YG, Liang YH, Zhou W. Effects of melt superheating treatment on microstructure of Mg2Si/Al-Si-Cu composite. J Alloy Compd. 2005;399:106–9.
DOI: 10.1016/j.jallcom.2005.03.015
Google Scholar
[8]
Soltani N, Jafari Nodooshan HR, Bahrami A, Pech-Canul MI, Liu WC, Wu GH. Effect of hot extrusion on wear properties of Al-15wt%Mg2Si in situ metal matrix composites. Mater Des. 2014; 53: 774–781.
DOI: 10.1016/j.matdes.2013.07.084
Google Scholar
[9]
Lee YS, Cha JH, Kim SH, Lim CY, Kim HW. Effect of pre-homogenization deformation treatment on the workability and mechanical properties of AlMg5Si2Mn alloy. Mater Sci Eng A. 2017;685:244-252.
DOI: 10.1016/j.msea.2016.12.107
Google Scholar
[10]
Ghorbani MR, Emamy M, Nemati N. Microstructural and mechanical characterization of Al–15%Mg2Si composite containing chromium. Mater Des. 2011;32:4262-9.
DOI: 10.1016/j.matdes.2011.04.020
Google Scholar
[11]
Khorshidi R, Honarbakhsh Raouf A, Emamy M, Campbell J. The study of Li effect on the microstructure and tensile properties of cast Al–Mg2Si metal matrix composite. J Alloy Compd. 2011;37:9026-9033.
DOI: 10.1016/j.jallcom.2011.07.012
Google Scholar
[12]
Emamy M, Nemati N, Heidarzadeh A. The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al–15% Mg2Si composite. Mater Sci Eng A. 2010; 12: 2998-3004.
DOI: 10.1016/j.msea.2010.01.063
Google Scholar
[13]
Ren B, Liu Z, Zhao RF, Zhang TQ, Liu ZY, Wang M, Weng Y, Effect of Sb on microstructure and mechanical properties of Mg2Si/Al-Si composites. T Nonferr Metal Soc. 2010;20:1367-1373.
DOI: 10.1016/s1003-6326(09)60306-x
Google Scholar
[14]
M. Emamy, R. Khorshidi, Honarbakhsh Raouf A. The influence of pure Na on the microstructure and tensile properties of Al-Mg2Si metal matrix composite. Mater Sci Eng A. 2011;528:4337-4342.
DOI: 10.1016/j.msea.2011.02.010
Google Scholar
[15]
Sang-Soo Shin, Eok-Soo Kim, Gil-Yong Yeom, Jae-Chul Lee, Modification effect of Sr on the microstructures and mechanical properties of Al–10.5Si–2.0Cu recycled alloy for die casting. Mater Sci Eng A. 2012;532:151-7.
DOI: 10.1016/j.msea.2011.10.076
Google Scholar
[16]
Liao C, Chen J, Li Y, Tu R, Pan C. Modification performance on 4032 Al alloy by using Al–10Sr master alloys manufactured from different processes. Prog Nat Sci Mater Int. 2014:24;87–96.
DOI: 10.1016/j.pnsc.2014.03.002
Google Scholar
[17]
Timpel M, Wanderka N, Schlesiger R, Yamamoto T, Lazarev N, Isheim D, Schmitz G, Matsumura S, Banhart J.The role of strontium in modifying aluminium–silicon alloys. Acta Mater. 2012;60:3920-8.
DOI: 10.1016/j.actamat.2012.03.031
Google Scholar
[18]
McDonald SD, Nogita K, Dahle AK. Eutectic grain size and strontium concentration in hypoeutectic aluminium–silicon alloys. J Alloys Compd. 2006;422:184–191.
DOI: 10.1016/j.jallcom.2005.11.070
Google Scholar
[19]
Król M. Effect of grain refinements on the microstructure and thermal behaviour of Mg-Li-Al Alloy. J Therm Anal Calorim. 2018;133:237-246.
DOI: 10.1007/s10973-018-7223-x
Google Scholar
[20]
Król M. Magnesium-lithium alloys with TiB and Sr additions. J Therm Anal Calorim. (2019) In Press.
DOI: 10.1007/s10973-019-08341-2
Google Scholar
[21]
Li C, Liu XF, Zhang GH. Heterogeneous nucleating role of TiB2 or AlP/TiB2 coupled compounds on primary Mg2Si in Al-Mg-Si alloys. Mater Sci Eng A. 2008;497:432-437.
DOI: 10.1016/j.msea.2008.07.034
Google Scholar
[22]
Birol Y. Interaction of grain refinement with B and modification with Sr in aluminium foundry alloys. Mater Sci Tech-Lond. 2012;28:70-6.
DOI: 10.1179/1743284711y.0000000081
Google Scholar
[23]
Król M, Snopiński P, Tomiczek B, Tański T, Pakieła W, Sitek W. Structure and properties of an Al. Alloy in as-cast state and after laser treatment. P Est Acad Sci. 2016;65:107.
DOI: 10.3176/proc.2016.2.07
Google Scholar
[24]
Tański T, Snopiński P, Hilser O. Microstructure and mechanical properties of two binary Al-Mg alloys deformed using equal channel angular pressing. Materialwiss Werkst. 2017;48:439-446.
DOI: 10.1002/mawe.201700020
Google Scholar
[25]
Qin QD, Zhao YG, Liu C, Cong PJ, Zhou W. Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite. J Alloys Compd. 2008; 454:142-146.
DOI: 10.1016/j.jallcom.2006.12.074
Google Scholar
[26]
Backuerud L, Chai G, Tamminen J. Solidification Characteristics of Aluminum Alloys, Vol. 2: Foundry Alloys AFS/Skanaluminium, Stockholm, Sweden (1990).
Google Scholar
[27]
Hegde S, Narayan Prabhu K. Modification of eutectic silicon in Al-Si alloys. J Mater Sci. 2008; 43: 3009-3027.
DOI: 10.1007/s10853-008-2505-5
Google Scholar
[28]
Wang T, Zheng Y, Chen Z, Zhao Y, Huijun Kang, Effects of Sr on the microstructure and mechanical properties of in situ TiB2 reinforced A356 composite. Mater Des. 2014;64:185-193.
DOI: 10.1016/j.matdes.2014.07.040
Google Scholar