Microstructure and Properties of the Aluminum Alloyed with ZrO Powder Using Fiber Laser

Article Preview

Abstract:

The scope of the work covers the development of the relationship between the chemical composition of surface-modified aluminium and its mechanical properties. This article presents the impact of laser alloying with ZrO powder on the microstructure and mechanical properties of pure aluminium. In order to study the phenomena occurring during the laser alloying process, microstructural studies were carried out using optical microscopy. Additionally, the properties of the obtained alloy were tested - abrasion resistance and hardness measured at low load force. As a result of the alloying process, three distinct zones were identified: the remelting zone (RZ), the diffusion zone (DZ) and the heat affected zone (HAZ). The surface modification resulting from laser alloying increases the hardness and abrasion resistance of the material.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 326)

Pages:

157-165

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.S. Mackenzie, Handbook of Aluminum, (2003).

Google Scholar

[2] F. Aftalion, A history of the International Chemical Industry –Second Editon, Chemical Heritage Press, Philadelphia, (2001).

Google Scholar

[3] Pakieła W., Tański T., Brytan Z., Labisz K. The influence of laser alloying on the structure and mechanicalproperties of AlMg5Si2Mn surface layers, Appl. Phys. A (2016) 122:352, DOI 10.1007/s00339-016-9834-z.

DOI: 10.1007/s00339-016-9834-z

Google Scholar

[4] Tański T., Pakieła W., Janicki D., Tomiczek B., Król M. Properties of the aluminium alloy EN AC-51100 after laser surface treatment, Arch. Metall. Mater., Vol. 61 (2016), No 1, p.199–204,.

DOI: 10.1515/amm-2016-0035

Google Scholar

[5] Brytan Z., Dobrzański L.A., Pakiełą W. Laser surface alloying of sintered stainless steels with SiC powder, Journal of Achievements in Materials and Manufacturing Engineering, V47 I1, 2011, pp.42-56.

Google Scholar

[6] Pakieła W., Dobrzański L.A., Labisz K., Tański T., Basa K., Roszak M., The effect of laser Surface treatment on structure and mechanical properties aluminium alloy ENAC-AlMg9, Arch. Metall. Mater., Vol. 61 (2016), No 3, p.1343–1350.

DOI: 10.1515/amm-2016-0221

Google Scholar

[7] Król M., Snopiński P., Tomiczek B., Tański T., Pakieła W. amd Sitek W. Structure and properties of an Al alloy in as-cast state and after laser treatment, Proceedings of the Estonian Academy of Sciences, 2016, 65, 2, 107–116.

DOI: 10.3176/proc.2016.2.07

Google Scholar

[8] K. E. Oczoś, A. Kawalec: Kształtowanie metali lekkich. Wyd. Naukowe PWN, Warszawa (2012).

Google Scholar

[9] S. J. Skrzypek, K. Przybyłowicz: Inżynieria metali i ich stopów. Wydawnictwo AGH, Kraków (2012).

Google Scholar

[10] E. Wojtkun, J.P. Sołoncew: Materiały specjalnego przeznaczenia. Wydawnictwo Politechniki Radomskiej, Radom (2001).

Google Scholar

[11] A. Fomin, Functionally graded zirconium oxide coatings produced on zirconium using induction heat treatment, Composite Structures, 220,2019, pp.318-323. https://doi.org/10.1016/ j.compstruct.2019.04.001.

DOI: 10.1016/j.compstruct.2019.04.001

Google Scholar

[12] S.T. Aruna, B. Arul Paligan, N. Balaji, V. Praveen Kumar, Properties of plasma sprayed yttria stabilized zirconia thermal barrier coating prepared from co-precipitation synthesized powder, Ceramics International, 40,7, part B, 2014, pp.11157-11162/ https://doi.org/10.1016/j.ceramint.2014.03.143.

DOI: 10.1016/j.ceramint.2014.03.143

Google Scholar

[13] H. Chen, Y. Zhang, C. Ding, Tribological properties of nanostructured zirconia coatings deposited by plasma spraying, Wear, 7-8, 253, 2002, pp.885-893. https://doi.org/10.1016/S0043-1648(02)00221-1.

DOI: 10.1016/s0043-1648(02)00221-1

Google Scholar

[14] Y. Zeng, S.W. Lee, L.Gao. C.X. Ding, Atmospheric plasma sprayed coatings of nanostructured zirconia, Journal of the European Ceramic Society, I3, V22, 2003, pp.347-351. https://doi.org/10.1016/S0955-2219(01)00291-6.

DOI: 10.1016/s0955-2219(01)00291-6

Google Scholar

[15] M. Afshari, R. Abbasi, M.R. Sovizi, Evaluation of nanometer-sized zirconium oxide incorporated Al-Mg-Ga-Sd alloy as anode for alkaline aluminium batteries, Transaction of Nonferrous Metals Society of China 30,1, 2020, pp.90-98. https://doi.org/10.1016/S1003-6326(19)65182-4.

DOI: 10.1016/s1003-6326(19)65182-4

Google Scholar

[16] C. Schriwer, A. Skjodl, N.R. Gjerdet, M. Øilo, Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture, Denatl Materials, 9,33,2017 pp.1012-1020 https://doi.org/10.1016/j.dental.2017.06.009.

DOI: 10.1016/j.dental.2017.06.009

Google Scholar

[17] Mierzwińska-Nastalska E: Uzupełnienia ceramiczne, postępowanie kliniczne i wykonawstwo laboratoryjne. Med Tour Press International, Otwock (2011).

Google Scholar

[18] K. Kubicka, T. Godlewski. The use of full-contour zirconia restorations in prosthodontics treatment. Nowa Stomatol 2016; 21 (4), pp.247-252.

Google Scholar

[19] M. Krupiński, P.E. Smolarczyk and M. Bonek, Microstructure and properties of the copper alloyed with Ag and Ti powders using fiber laser, Materials 2020, 13 (11), 2430. https://doi.org/10.3390/ma13112430.

DOI: 10.3390/ma13112430

Google Scholar

[20] Syarifudin M., Hale E.N., Sofyan B.T. Effect of ZrO2 Addition on Mechanical Properties and Microstructure of Al-9Zn-6Mg-3Si Matrix Composites Manufactured by Squeeze Casting, IOP Conf. Series: Materials Science and Engineering 517 (2019) 012001,.

DOI: 10.1088/1757-899x/517/1/012001

Google Scholar