[1]
P. Snopiński, M. Król, T. Wróbel, K. Matus, A. Woźniak, T. Tański, P. Palček, Effects of modifying the hypoeutectic AlMg5Si2Mn alloy via addition of Al10Sr and/or Al5TiB, Arch. Civ. Mech. Eng. 21 (2020) 2. https://doi.org/10.1007/s43452-020-00147-6.
DOI: 10.1007/s43452-020-00147-6
Google Scholar
[2]
M. Tocci, A. Pola, L. Girelli, F. Lollio, L. Montesano, M. Gelfi, Wear and Cavitation Erosion Resistance of an AlMgSc Alloy Produced by DMLS, Metals (Basel). 9 (2019) 308. https://doi.org/10.3390/met9030308.
DOI: 10.3390/met9030308
Google Scholar
[3]
M. Tebib, A.M. Samuel, F. Ajersch, X.G. Chen, Effect of P and Sr additions on the microstructure of hypereutectic Al-15Si-14Mg-4Cu alloy, Mater. Charact. (2014). https://doi.org/10.1016/j.matchar.2014.01.005.
DOI: 10.1016/j.matchar.2014.01.005
Google Scholar
[4]
P. Snopiński, T. Tański, M. Sroka, M. Kremzer, The effect of heat treatment conditions on the structure evolution and mechanical properties of two binary Al-Mg aluminium alloys, Metalurgija. 56 (2017).
Google Scholar
[5]
T. Tański, P. Snopiński, W. Borek, Strength and structure of AlMg3 alloy after ECAP and post-ECAP processing, Mater. Manuf. Process. 0 (n.d.) 1–7. https://doi.org/10.1080/10426914.2016.1257131.
DOI: 10.1080/10426914.2016.1257131
Google Scholar
[6]
C. Rochet, M. Veron, E.F. Rauch, T.C. Lowe, B. Arfaei, A. Laurino, J.P. Harouard, C. Blanc, Influence of equal-channel angular pressing on the microstructure and corrosion behaviour of a 6xxx aluminium alloy for automotive conductors, Corros. Sci. 166 (2020) 108453. https://doi.org/10.1016/j.corsci.2020.108453.
DOI: 10.1016/j.corsci.2020.108453
Google Scholar
[7]
M.A. Mostafaei, M. Kazeminezhad, Hot deformation behavior of hot extruded Al-6Mg alloy, Mater. Sci. Eng. A. (2012). https://doi.org/10.1016/j.msea.2011.12.067.
DOI: 10.1016/j.msea.2011.12.067
Google Scholar
[8]
M. Liu, H.J. Roven, X. Liu, M. Murashkin, R.Z. Valiev, T. Ungár, L. Balogh, Grain refinement in nanostructured Al-Mg alloys subjected to high pressure torsion, J. Mater. Sci. 45 (2010) 4659–4664. https://doi.org/10.1007/s10853-010-4604-3.
DOI: 10.1007/s10853-010-4604-3
Google Scholar
[9]
A. Mogucheva, E. Babich, B. Ovsyannikov, R. Kaibyshev, Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure, Mater. Sci. Eng. A. 560 (2013) 178–192. https://doi.org/http://dx.doi.org/10.1016/j.msea.2012.09.054.
DOI: 10.1016/j.msea.2012.09.054
Google Scholar
[10]
V.M. Segal, Equal channel angular extrusion: from macromechanics to structure formation, Mater. Sci. Eng. A. 271 (1999) 322–333. https://doi.org/10.1016/S0921-5093(99)00248-8.
DOI: 10.1016/s0921-5093(99)00248-8
Google Scholar
[11]
Y. Liu, S. Cai, Gradients of strain to increase strength and ductility of magnesium alloys, Metals (Basel). (2019). https://doi.org/10.3390/met9101028.
DOI: 10.3390/met9101028
Google Scholar
[12]
S. Liu, H. Guo, Influence of hot isostatic pressing (HIP) on mechanical properties of magnesium alloy produced by selective laser melting (SLM), Mater. Lett. 265 (2020) 127463. https://doi.org/https://doi.org/10.1016/j.matlet.2020.127463.
DOI: 10.1016/j.matlet.2020.127463
Google Scholar
[13]
P. Snopiński, T. Tański, K. Labisz, S. Rusz, P. Jonsta, M. Król, Wrought aluminium-magnesium alloys subjected to SPD processing, Int. J. Mater. Res. 107 (2016). https://doi.org/10.3139/146.111383.
DOI: 10.3139/146.111383
Google Scholar
[14]
I. Saxl, A. Kalousová, L. Ilucová, V. Sklenička, Grain and subgrain boundaries in ultrafine-grained materials, Mater. Charact. 60 (2009) 1163–1167. https://doi.org/http://dx.doi.org/10.1016/j.matchar.2009.03.010.
DOI: 10.1016/j.matchar.2009.03.010
Google Scholar
[15]
R.K. Dutta, R.H. Petrov, M.J.M. Hermans, I.M. Richardson, Accommodation of Plastic Deformation by Ultrasound-Induced Grain Rotation, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. (2015). https://doi.org/10.1007/s11661-015-2910-8.
DOI: 10.1007/s11661-015-2910-8
Google Scholar
[16]
A.G. Lunev, M. V. Nadezhkin, S.A. Barannikova, L.B. Zuev, Acoustic parameters as criteria of localized deformation in aluminum alloys, in: Acta Phys. Pol. A, 2018. https://doi.org/10.12693/APhysPolA.134.342.
DOI: 10.12693/aphyspola.134.342
Google Scholar
[17]
R. Pohlman, E. Lehfeldt, Influence of ultrasonic vibration on metallic friction, Ultrasonics. (1966). https://doi.org/10.1016/0041-624X(66)90244-7.
DOI: 10.1016/0041-624x(66)90244-7
Google Scholar
[18]
K.W. Siu, A.H.W. Ngan, I.P. Jones, New insight on acoustoplasticity - Ultrasonic irradiation enhances subgrain formation during deformation, Int. J. Plast. (2011). https://doi.org/10.1016/j.ijplas.2010.09.007.
DOI: 10.1016/j.ijplas.2010.09.007
Google Scholar
[19]
M. Król, T. Tański, P. Snopiński, B. Tomiczek, Structure and properties of aluminium–magnesium casting alloys after heat treatment, J. Therm. Anal. Calorim. 127 (2017). https://doi.org/10.1007/s10973-016-5845-4.
DOI: 10.1007/s10973-016-5845-4
Google Scholar
[20]
M. Król, T. Tański, P. Snopiński, B. Tomiczek, Structure and properties of aluminium–magnesium casting alloys after heat treatment, J. Therm. Anal. Calorim. (2016). https://doi.org/10.1007/s10973-016-5845-4.
DOI: 10.1007/s10973-016-5845-4
Google Scholar
[21]
T. Tański, P. Snopiński, K. Prusik, M. Sroka, The effects of room temperature ECAP and subsequent aging on the structure and properties of the Al-3%Mg aluminium alloy, Mater. Charact. 133 (2017). https://doi.org/10.1016/j.matchar.2017.09.039.
DOI: 10.1016/j.matchar.2017.09.039
Google Scholar
[22]
P. Snopińśki, T. Tański, K. Matus, S. Rusz, Microstructure, grain refinement and hardness of Al–3%Mg aluminium alloy processed by ECAP with helical die, Arch. Civ. Mech. Eng. (2019). https://doi.org/10.1016/j.acme.2018.11.003.
DOI: 10.1016/j.acme.2018.11.003
Google Scholar