Microstructure and Hardness of AlMg3 Alloy Subjected to Ultrasonic Upsetting

Article Preview

Abstract:

This study was conducted to study the effect ultrasonic vibrations on the evolution of the microstructure and hardness of the AlMg3 aluminum alloy in a solution treated condition. To understand the process physics in this article, after the deformation the microstructures of the samples before and after deformation were analyzed by the light and electron microscopy, including the electron backscatter diffraction (EBSD) analysis. The result evidently shows that the ultrasonic-assisted deformation has a meaningful influence on the grain refinement – the application of the USV enhances the formation of deformation bands and new sub-grains. This resulted in a certain hardness enhancement.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 326)

Pages:

149-156

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Snopiński, M. Król, T. Wróbel, K. Matus, A. Woźniak, T. Tański, P. Palček, Effects of modifying the hypoeutectic AlMg5Si2Mn alloy via addition of Al10Sr and/or Al5TiB, Arch. Civ. Mech. Eng. 21 (2020) 2. https://doi.org/10.1007/s43452-020-00147-6.

DOI: 10.1007/s43452-020-00147-6

Google Scholar

[2] M. Tocci, A. Pola, L. Girelli, F. Lollio, L. Montesano, M. Gelfi, Wear and Cavitation Erosion Resistance of an AlMgSc Alloy Produced by DMLS, Metals (Basel). 9 (2019) 308. https://doi.org/10.3390/met9030308.

DOI: 10.3390/met9030308

Google Scholar

[3] M. Tebib, A.M. Samuel, F. Ajersch, X.G. Chen, Effect of P and Sr additions on the microstructure of hypereutectic Al-15Si-14Mg-4Cu alloy, Mater. Charact. (2014). https://doi.org/10.1016/j.matchar.2014.01.005.

DOI: 10.1016/j.matchar.2014.01.005

Google Scholar

[4] P. Snopiński, T. Tański, M. Sroka, M. Kremzer, The effect of heat treatment conditions on the structure evolution and mechanical properties of two binary Al-Mg aluminium alloys, Metalurgija. 56 (2017).

Google Scholar

[5] T. Tański, P. Snopiński, W. Borek, Strength and structure of AlMg3 alloy after ECAP and post-ECAP processing, Mater. Manuf. Process. 0 (n.d.) 1–7. https://doi.org/10.1080/10426914.2016.1257131.

DOI: 10.1080/10426914.2016.1257131

Google Scholar

[6] C. Rochet, M. Veron, E.F. Rauch, T.C. Lowe, B. Arfaei, A. Laurino, J.P. Harouard, C. Blanc, Influence of equal-channel angular pressing on the microstructure and corrosion behaviour of a 6xxx aluminium alloy for automotive conductors, Corros. Sci. 166 (2020) 108453. https://doi.org/10.1016/j.corsci.2020.108453.

DOI: 10.1016/j.corsci.2020.108453

Google Scholar

[7] M.A. Mostafaei, M. Kazeminezhad, Hot deformation behavior of hot extruded Al-6Mg alloy, Mater. Sci. Eng. A. (2012). https://doi.org/10.1016/j.msea.2011.12.067.

DOI: 10.1016/j.msea.2011.12.067

Google Scholar

[8] M. Liu, H.J. Roven, X. Liu, M. Murashkin, R.Z. Valiev, T. Ungár, L. Balogh, Grain refinement in nanostructured Al-Mg alloys subjected to high pressure torsion, J. Mater. Sci. 45 (2010) 4659–4664. https://doi.org/10.1007/s10853-010-4604-3.

DOI: 10.1007/s10853-010-4604-3

Google Scholar

[9] A. Mogucheva, E. Babich, B. Ovsyannikov, R. Kaibyshev, Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure, Mater. Sci. Eng. A. 560 (2013) 178–192. https://doi.org/http://dx.doi.org/10.1016/j.msea.2012.09.054.

DOI: 10.1016/j.msea.2012.09.054

Google Scholar

[10] V.M. Segal, Equal channel angular extrusion: from macromechanics to structure formation, Mater. Sci. Eng. A. 271 (1999) 322–333. https://doi.org/10.1016/S0921-5093(99)00248-8.

DOI: 10.1016/s0921-5093(99)00248-8

Google Scholar

[11] Y. Liu, S. Cai, Gradients of strain to increase strength and ductility of magnesium alloys, Metals (Basel). (2019). https://doi.org/10.3390/met9101028.

DOI: 10.3390/met9101028

Google Scholar

[12] S. Liu, H. Guo, Influence of hot isostatic pressing (HIP) on mechanical properties of magnesium alloy produced by selective laser melting (SLM), Mater. Lett. 265 (2020) 127463. https://doi.org/https://doi.org/10.1016/j.matlet.2020.127463.

DOI: 10.1016/j.matlet.2020.127463

Google Scholar

[13] P. Snopiński, T. Tański, K. Labisz, S. Rusz, P. Jonsta, M. Król, Wrought aluminium-magnesium alloys subjected to SPD processing, Int. J. Mater. Res. 107 (2016). https://doi.org/10.3139/146.111383.

DOI: 10.3139/146.111383

Google Scholar

[14] I. Saxl, A. Kalousová, L. Ilucová, V. Sklenička, Grain and subgrain boundaries in ultrafine-grained materials, Mater. Charact. 60 (2009) 1163–1167. https://doi.org/http://dx.doi.org/10.1016/j.matchar.2009.03.010.

DOI: 10.1016/j.matchar.2009.03.010

Google Scholar

[15] R.K. Dutta, R.H. Petrov, M.J.M. Hermans, I.M. Richardson, Accommodation of Plastic Deformation by Ultrasound-Induced Grain Rotation, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. (2015). https://doi.org/10.1007/s11661-015-2910-8.

DOI: 10.1007/s11661-015-2910-8

Google Scholar

[16] A.G. Lunev, M. V. Nadezhkin, S.A. Barannikova, L.B. Zuev, Acoustic parameters as criteria of localized deformation in aluminum alloys, in: Acta Phys. Pol. A, 2018. https://doi.org/10.12693/APhysPolA.134.342.

DOI: 10.12693/aphyspola.134.342

Google Scholar

[17] R. Pohlman, E. Lehfeldt, Influence of ultrasonic vibration on metallic friction, Ultrasonics. (1966). https://doi.org/10.1016/0041-624X(66)90244-7.

DOI: 10.1016/0041-624x(66)90244-7

Google Scholar

[18] K.W. Siu, A.H.W. Ngan, I.P. Jones, New insight on acoustoplasticity - Ultrasonic irradiation enhances subgrain formation during deformation, Int. J. Plast. (2011). https://doi.org/10.1016/j.ijplas.2010.09.007.

DOI: 10.1016/j.ijplas.2010.09.007

Google Scholar

[19] M. Król, T. Tański, P. Snopiński, B. Tomiczek, Structure and properties of aluminium–magnesium casting alloys after heat treatment, J. Therm. Anal. Calorim. 127 (2017). https://doi.org/10.1007/s10973-016-5845-4.

DOI: 10.1007/s10973-016-5845-4

Google Scholar

[20] M. Król, T. Tański, P. Snopiński, B. Tomiczek, Structure and properties of aluminium–magnesium casting alloys after heat treatment, J. Therm. Anal. Calorim. (2016). https://doi.org/10.1007/s10973-016-5845-4.

DOI: 10.1007/s10973-016-5845-4

Google Scholar

[21] T. Tański, P. Snopiński, K. Prusik, M. Sroka, The effects of room temperature ECAP and subsequent aging on the structure and properties of the Al-3%Mg aluminium alloy, Mater. Charact. 133 (2017). https://doi.org/10.1016/j.matchar.2017.09.039.

DOI: 10.1016/j.matchar.2017.09.039

Google Scholar

[22] P. Snopińśki, T. Tański, K. Matus, S. Rusz, Microstructure, grain refinement and hardness of Al–3%Mg aluminium alloy processed by ECAP with helical die, Arch. Civ. Mech. Eng. (2019). https://doi.org/10.1016/j.acme.2018.11.003.

DOI: 10.1016/j.acme.2018.11.003

Google Scholar