Influence of the ECAP Tool Channel Geometry on the Structure and Properties of Al-3%Mg Aluminium Alloy

Article Preview

Abstract:

In this study, commercial Al-3%Mg aluminium alloy was subjected to ECAP processing using two different ECAP die configurations. The first one – conventional and the second one modified in which a part of the exit channel in the ECAP die, causes twist deformation, to impose extra shear strains to the sample. The local changes in microstructure were characterized by Light Microscopy, SEM equipped with an EBSD facility and TEM. Mechanical properties of the ECAP processed samples were compared based on hardness measurement. The results showed that when ECAP with modified die, the greater grain and crystalline refinement is possible. The microstructures exhibit high dislocation density within subgrains with non-equilibrium and Moiré boundaries. Moreover, the mechanical examinations display a significant improvement in hardness and calculated yield strength when the ECAP process is conducted using a modified die.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 326)

Pages:

125-147

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.S. Mackenzie, Handbook of Aluminum, 2003. https://doi.org/10.1201/9780203912607.

Google Scholar

[2] J. Votano, M. Parham, L. Hall, Hanbook of aluminum Volume 2 alloy production and material manufacturing, Chem. …. (2004) 1–731. http://onlinelibrary.wiley.com/doi/10.1002/ cbdv.200490137/abstract.

Google Scholar

[3] P. Snopiński, T. Tański, M. Sroka, M. Kremzer, The effect of heat treatment conditions on the structure evolution and mechanical properties of two binary Al-Mg aluminium alloys, Metalurgija. 56 (2017).

Google Scholar

[4] M. Król, P. Snopiński, B. Tomiczek, T. Tański, W. Pakieła, W. Sitek, Structure and properties of an Al alloy in as-cast state and after laser treatment, Proc. Est. Acad. Sci. 65 (2016). https://doi.org/10.3176/proc.2016.2.07.

DOI: 10.3176/proc.2016.2.07

Google Scholar

[5] T. Tański, P. Snopiński, W. Pakieła, W. Borek, K. Prusik, S. Rusz, Structure and properties of AlMg alloy after combination of ECAP and post-ECAP ageing, Arch. Civ. Mech. Eng. 16 (2016). https://doi.org/10.1016/j.acme.2015.12.004.

DOI: 10.1016/j.acme.2015.12.004

Google Scholar

[6] T. Ta?ski, P. Snopi?ski, O. Hilser, Microstructure and mechanical properties of two binary Al-Mg alloys deformed using equal channel angular pressing, Materwiss. Werksttech. 48 (2017) 439–446. https://doi.org/10.1002/mawe.201700020.

DOI: 10.1002/mawe.201700020

Google Scholar

[7] S. Toros, F. Ozturk, I. Kacar, Review of warm forming of aluminum-magnesium alloys, J. Mater. Process. Technol. 207 (2008) 1–12. https://doi.org/10.1016/j.jmatprotec.2008.03.057.

DOI: 10.1016/j.jmatprotec.2008.03.057

Google Scholar

[8] N. Thangapandian, S. Balasivanandha Prabu, K.A. Padmanabhan, Effects of die profile on grain refinement in Al-Mg alloy processed by repetitive corrugation and straightening, Mater. Sci. Eng. A. 649 (2016) 229–238. https://doi.org/10.1016/j.msea.2015.09.051.

DOI: 10.1016/j.msea.2015.09.051

Google Scholar

[9] M.P. Liu, H.J. Roven, X.T. Liu, M. Murashkin, R.Z. Valiev, T. UngÁr, L. Balogh, Special nanostructures in Al-Mg alloys subjected to high pressure torsion, Trans. Nonferrous Met. Soc. China (English Ed. 20 (2010) 2051–2056. https://doi.org/10.1016/S1003-6326(09)60416-7.

DOI: 10.1016/s1003-6326(09)60416-7

Google Scholar

[10] H. Jin, D.J. Lloyd, Effect of a duplex grain size on the tensile ductility of an ultra-fine grained Al-Mg alloy, AA5754, produced by asymmetric rolling and annealing, Scr. Mater. 50 (2004) 1319–1323. https://doi.org/10.1016/j.scriptamat.2004.02.021.

DOI: 10.1016/j.scriptamat.2004.02.021

Google Scholar

[11] M. Zha, X.T. Meng, H.M. Zhang, X.H. Zhang, H.L. Jia, Y.J. Li, J.Y. Zhang, H.Y. Wang, Q.C. Jiang, High strength and ductile high solid solution Al–Mg alloy processed by a novel hard-plate rolling route, J. Alloys Compd. 728 (2017) 872–877. https://doi.org/10.1016/j.jallcom.2017.09.017.

DOI: 10.1016/j.jallcom.2017.09.017

Google Scholar

[12] R. Ma, C. Peng, Z. Cai, R. Wang, Z. Zhou, X. Li, X. Cao, Enhanced strength of the selective laser melted Al-Mg-Sc-Zr alloy by cold rolling, Mater. Sci. Eng. A. (2020). https://doi.org/10.1016/j.msea.2020.138975.

DOI: 10.1016/j.msea.2020.138975

Google Scholar

[13] V.M. Segal, Equal channel angular extrusion: from macromechanics to structure formation, Mater. Sci. Eng. A. 271 (1999) 322–333. https://doi.org/10.1016/S0921-5093(99)00248-8.

DOI: 10.1016/s0921-5093(99)00248-8

Google Scholar

[14] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035–7059. https://doi.org/10.1016/j.actamat.2013.08.018.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[15] P. Snopiński, M. Król, Microstructure, Mechanical Properties and Strengthening Mechanism Analysis in an AlMg5 Aluminium Alloy Processed by ECAP and Subsequent Ageing, Metals (Basel). (2018). https://doi.org/10.3390/met8110969.

DOI: 10.3390/met8110969

Google Scholar

[16] P. Snopiński, T. Tański, K. Matus, S. Rusz, Microstructure, grain refinement and hardness of Al–3%Mg aluminium alloy processed by ECAP with helical die, Arch. Civ. Mech. Eng. (n.d.). https://doi.org/10.1016/j.acme.2018.11.003.

DOI: 10.1016/j.acme.2018.11.003

Google Scholar

[17] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Plastic deformation of alloys with submicron-grained structure, Mater. Sci. Eng. A. 137 (1991) 35–40. https://doi.org/http://dx.doi.org/ 10.1016/0921-5093(91)90316-F.

DOI: 10.1016/0921-5093(91)90316-f

Google Scholar

[18] T.G. Langdon, The principles of grain refinement in equal-channel angular pressing, Mater. Sci. Eng. A. 462 (2007) 3–11. https://doi.org/10.1016/j.msea.2006.02.473.

DOI: 10.1016/j.msea.2006.02.473

Google Scholar

[19] S.S. Zhang, T.W. Xu, M.X. Sun, B.J. Lv, X.H. Ma, Effects of microstructure and texture evolution during the industrial ECAE and recrystallization on tensile properties of pure niobium, Mater. Sci. Eng. A. 807 (2021) 140896. https://doi.org/10.1016/j.msea.2021.140896.

DOI: 10.1016/j.msea.2021.140896

Google Scholar

[20] A.B. Varadala, S.N. Gurugubelli, S. Bandaru, Enhancement of structural and mechanical behavior of Al-Mg alloy processed by ECAE, in: Mater. Today Proc., Elsevier Ltd, 2019: p.2147–2151. https://doi.org/10.1016/j.matpr.2019.06.654.

DOI: 10.1016/j.matpr.2019.06.654

Google Scholar

[21] B. Mani, M. Jahedi, M.H. Paydar, Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature, Powder Technol. (2012). https://doi.org/10.1016/j.powtec.2011.11.034.

DOI: 10.1016/j.powtec.2011.11.034

Google Scholar

[22] B. Mani, M. Jahedi, M.H. Paydar, A modification on ECAP process by incorporating torsional deformation, Mater. Sci. Eng. A. 528 (2011) 4159–4165. https://doi.org/http://dx.doi.org/ 10.1016/j.msea.2011.02.015.

DOI: 10.1016/j.msea.2011.02.015

Google Scholar

[23] N. FAKHAR, F. FERESHTEH-SANIEE, R. MAHMUDI, Significant improvements in mechanical properties of AA5083 aluminum alloy using dual equal channel lateral extrusion, Trans. Nonferrous Met. Soc. China (English Ed. 26 (2016) 3081–3090. https://doi.org/10.1016/S1003-6326(16)64440-0.

DOI: 10.1016/s1003-6326(16)64440-0

Google Scholar

[24] A. Hasani, M. Sepsi, S. Feyzi, L.S. Toth, Deformation field and texture analysis in T-ECAP using a flow function, Mater. Charact. 173 (2021) 110912. https://doi.org/10.1016/ j.matchar.2021.110912.

DOI: 10.1016/j.matchar.2021.110912

Google Scholar

[25] X. Ma, M.R. Barnett, Y.H. Kim, Forward extrusion through steadily rotating conical dies. Part I: Experiments, Int. J. Mech. Sci. 46 (2004) 449–464. https://doi.org/10.1016/j.ijmecsci. 2004.03.017.

DOI: 10.1016/j.ijmecsci.2004.03.017

Google Scholar

[26] V. V. Stolyarov, R. Lapovok, I.G. Brodova, P.F. Thomson, Ultrafine-grained Al-5 wt.% Fe alloy processed by ECAP with backpressure, Mater. Sci. Eng. A. 357 (2003) 159–167. https://doi.org/10.1016/S0921-5093(03)00215-6.

DOI: 10.1016/s0921-5093(03)00215-6

Google Scholar

[27] J.F. Derakhshan, M.H. Parsa, H.R. Jafarian, Microstructure and mechanical properties variations of pure aluminum subjected to one pass of ECAP-Conform process, Mater. Sci. Eng. A. 747 (2019) 120–129. https://doi.org/10.1016/j.msea.2019.01.058.

DOI: 10.1016/j.msea.2019.01.058

Google Scholar

[28] H. Bohluli, K. Khalili, S.M.H. Seyedkashi, An investigation on twist extrusion followed by forward extrusion in production of aluminum–copper bimetallic bar, CIRP J. Manuf. Sci. Technol. 33 (2021) 52–62. https://doi.org/10.1016/j.cirpj.2021.02.010.

DOI: 10.1016/j.cirpj.2021.02.010

Google Scholar

[29] Y. Beygelzimer, D. Prilepo, R. Kulagin, V. Grishaev, O. Abramova, V. Varyukhin, M. Kulakov, Planar Twist Extrusion versus Twist Extrusion, J. Mater. Process. Technol. 211 (2011) 522–529. https://doi.org/10.1016/j.jmatprotec.2010.11.006.

DOI: 10.1016/j.jmatprotec.2010.11.006

Google Scholar

[30] H. Bisadi, M.R. Mohamadi, H. Miyanaji, M. Abdoli, A Modification on ECAP Process by Incorporating Twist Channel, J. Mater. Eng. Perform. 22 (2013) 875–881. https://doi.org/10.1007/s11665-012-0323-z.

DOI: 10.1007/s11665-012-0323-z

Google Scholar

[31] D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, Z. Horita, Plastic flow, structure and mechanical properties in pure Al deformed by twist extrusion, Mater. Sci. Eng. A. 519 (2009) 105–111. https://doi.org/10.1016/j.msea.2009.06.005.

DOI: 10.1016/j.msea.2009.06.005

Google Scholar

[32] G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953) 22–31. https://doi.org/http://dx.doi.org/10.1016/0001-6160(53)90006-6.

DOI: 10.1016/0001-6160(53)90006-6

Google Scholar

[33] D.G. Eskin, A.A.B.T.-M.P.D. Aksenov, eds., Appendix 5 - REFERENCES ON SOME CALCULATED AL-BASED SYSTEMS A2 - Belov, Nikolay A., (2005) 396–398. https://doi.org/https://doi.org/10.1016/B978-008044537-3/50015-9.

Google Scholar

[34] T. Tański, P. Snopiński, W. Borek, Strength and structure of AlMg<inf>3</inf> alloy after ECAP and post-ECAP processing, Mater. Manuf. Process. 32 (2017). https://doi.org/10.1080/10426914.2016.1257131.

DOI: 10.1080/10426914.2016.1257131

Google Scholar

[35] T. Tański, P. Snopiński, K. Prusik, M. Sroka, The effects of room temperature ECAP and subsequent aging on the structure and properties of the Al-3%Mg aluminium alloy, Mater. Charact. 133 (2017). https://doi.org/10.1016/j.matchar.2017.09.039.

DOI: 10.1016/j.matchar.2017.09.039

Google Scholar

[36] M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, The use of severe plastic deformation for microstructural control, Mater. Sci. Eng. A. 324 (2002) 82–89. https://doi.org/10.1016/S0921-5093(01)01288-6.

DOI: 10.1016/s0921-5093(01)01288-6

Google Scholar

[37] T. Tański, P. Snopiński, W. Borek, Strength and structure of AlMg3 alloy after ECAP and post-ECAP processing, Mater. Manuf. Process. 0 (n.d.) 1–7. https://doi.org/10.1080/ 10426914.2016.1257131.

DOI: 10.1080/10426914.2016.1257131

Google Scholar

[38] A. Mogucheva, E. Babich, B. Ovsyannikov, R. Kaibyshev, Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure, Mater. Sci. Eng. A. 560 (2013) 178–192. https://doi.org/http://dx.doi.org/10.1016/j.msea.2012.09.054.

DOI: 10.1016/j.msea.2012.09.054

Google Scholar

[39] H. Bin Geng, S.B. Kang, B.K. Min, High temperature tensile behavior of ultra-fine grained Al-3.3Mg-0.2Sc-0.2Zr alloy by equal channel angular pressing, Mater. Sci. Eng. A. 373 (2004) 229–238. https://doi.org/10.1016/j.msea.2004.01.047.

DOI: 10.1016/j.msea.2004.01.047

Google Scholar

[40] A. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, M. Kawazoe, Fatigue properties of 5056 Al-Mg alloy produced by equal-channel angular pressing, Nanostructured Mater. 11 (1999) 925–934. https://doi.org/10.1016/S0965-9773(99)00392-X.

DOI: 10.1016/s0965-9773(99)00392-x

Google Scholar

[41] D. Singh, P.N. Rao, R. Jayaganthan, Effect of deformation temperature on mechanical properties of ultrafine grained Al–Mg alloys processed by rolling, Mater. Des. 50 (2013) 646–655. https://doi.org/10.1016/j.matdes.2013.02.068.

DOI: 10.1016/j.matdes.2013.02.068

Google Scholar

[42] K.T. Park, H.J. Lee, C.S. Lee, D.H. Shin, Effect of post-rolling after ECAP on deformation behavior of ECAPed commercial Al-Mg alloy at 723 K, Mater. Sci. Eng. A. 393 (2005) 118–124. https://doi.org/10.1016/j.msea.2004.09.066.

DOI: 10.1016/j.msea.2004.09.066

Google Scholar

[43] C.P. Chang, P.L. Sun, P.W. Kao, Deformation induced grain boundaries in commercially pure aluminium, Acta Mater. 48 (2000) 3377–3385. https://doi.org/http://dx.doi.org/10.1016/ S1359-6454(00)00138-5.

DOI: 10.1016/s1359-6454(00)00138-5

Google Scholar

[44] M. Liu, H.J. Roven, Y. Yu, J.C. Werenskiold, Deformation structures in 6082 aluminium alloy after severe plastic deformation by equal-channel angular pressing, Mater. Sci. Eng. A. 483–484 (2008) 59–63. https://doi.org/10.1016/j.msea.2006.09.144.

DOI: 10.1016/j.msea.2006.09.144

Google Scholar

[45] H. Alihosseini, G. Faraji, A.F. Dizaji, K. Dehghani, Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE), Mater. Charact. 68 (2012) 14–21. https://doi.org/http://dx.doi.org/10.1016/j.matchar.2012.03.004.

DOI: 10.1016/j.matchar.2012.03.004

Google Scholar

[46] I. Saxl, A. Kalousová, L. Ilucová, V. Sklenička, Grain and subgrain boundaries in ultrafine-grained materials, Mater. Charact. 60 (2009) 1163–1167. https://doi.org/http://dx.doi.org/ 10.1016/j.matchar.2009.03.010.

DOI: 10.1016/j.matchar.2009.03.010

Google Scholar

[47] T. Ungár, L. Balogh, Y.T. Zhu, Z. Horita, C. Xu, T.G. Langdon, Using X-ray microdiffraction to determine grain sizes at selected positions in disks processed by high-pressure torsion, Mater. Sci. Eng. A. 444 (2007)153–156. https://doi.org/http://dx.doi.org/10.1016/j.msea.2006.08. 059.

DOI: 10.1016/j.msea.2006.08.059

Google Scholar

[48] Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander, H.-E. Ekström, Strengthening mechanisms in solid solution aluminum alloys, Metall. Mater. Trans. A. 37 (2006) 1999–2006. https://doi.org/10.1007/s11661-006-0142-7.

DOI: 10.1007/s11661-006-0142-7

Google Scholar

[49] N.Q. Chinh, J. Gubicza, T.G. Langdon, Characteristics of face-centered cubic metals processed by equal-channel angular pressing, J. Mater. Sci. 42 (2007) 1594–1605. https://doi.org/10.1007/s10853-006-0900-3.

DOI: 10.1007/s10853-006-0900-3

Google Scholar