[1]
D.S. Mackenzie, Handbook of Aluminum, 2003. https://doi.org/10.1201/9780203912607.
Google Scholar
[2]
J. Votano, M. Parham, L. Hall, Hanbook of aluminum Volume 2 alloy production and material manufacturing, Chem. …. (2004) 1–731. http://onlinelibrary.wiley.com/doi/10.1002/ cbdv.200490137/abstract.
Google Scholar
[3]
P. Snopiński, T. Tański, M. Sroka, M. Kremzer, The effect of heat treatment conditions on the structure evolution and mechanical properties of two binary Al-Mg aluminium alloys, Metalurgija. 56 (2017).
Google Scholar
[4]
M. Król, P. Snopiński, B. Tomiczek, T. Tański, W. Pakieła, W. Sitek, Structure and properties of an Al alloy in as-cast state and after laser treatment, Proc. Est. Acad. Sci. 65 (2016). https://doi.org/10.3176/proc.2016.2.07.
DOI: 10.3176/proc.2016.2.07
Google Scholar
[5]
T. Tański, P. Snopiński, W. Pakieła, W. Borek, K. Prusik, S. Rusz, Structure and properties of AlMg alloy after combination of ECAP and post-ECAP ageing, Arch. Civ. Mech. Eng. 16 (2016). https://doi.org/10.1016/j.acme.2015.12.004.
DOI: 10.1016/j.acme.2015.12.004
Google Scholar
[6]
T. Ta?ski, P. Snopi?ski, O. Hilser, Microstructure and mechanical properties of two binary Al-Mg alloys deformed using equal channel angular pressing, Materwiss. Werksttech. 48 (2017) 439–446. https://doi.org/10.1002/mawe.201700020.
DOI: 10.1002/mawe.201700020
Google Scholar
[7]
S. Toros, F. Ozturk, I. Kacar, Review of warm forming of aluminum-magnesium alloys, J. Mater. Process. Technol. 207 (2008) 1–12. https://doi.org/10.1016/j.jmatprotec.2008.03.057.
DOI: 10.1016/j.jmatprotec.2008.03.057
Google Scholar
[8]
N. Thangapandian, S. Balasivanandha Prabu, K.A. Padmanabhan, Effects of die profile on grain refinement in Al-Mg alloy processed by repetitive corrugation and straightening, Mater. Sci. Eng. A. 649 (2016) 229–238. https://doi.org/10.1016/j.msea.2015.09.051.
DOI: 10.1016/j.msea.2015.09.051
Google Scholar
[9]
M.P. Liu, H.J. Roven, X.T. Liu, M. Murashkin, R.Z. Valiev, T. UngÁr, L. Balogh, Special nanostructures in Al-Mg alloys subjected to high pressure torsion, Trans. Nonferrous Met. Soc. China (English Ed. 20 (2010) 2051–2056. https://doi.org/10.1016/S1003-6326(09)60416-7.
DOI: 10.1016/s1003-6326(09)60416-7
Google Scholar
[10]
H. Jin, D.J. Lloyd, Effect of a duplex grain size on the tensile ductility of an ultra-fine grained Al-Mg alloy, AA5754, produced by asymmetric rolling and annealing, Scr. Mater. 50 (2004) 1319–1323. https://doi.org/10.1016/j.scriptamat.2004.02.021.
DOI: 10.1016/j.scriptamat.2004.02.021
Google Scholar
[11]
M. Zha, X.T. Meng, H.M. Zhang, X.H. Zhang, H.L. Jia, Y.J. Li, J.Y. Zhang, H.Y. Wang, Q.C. Jiang, High strength and ductile high solid solution Al–Mg alloy processed by a novel hard-plate rolling route, J. Alloys Compd. 728 (2017) 872–877. https://doi.org/10.1016/j.jallcom.2017.09.017.
DOI: 10.1016/j.jallcom.2017.09.017
Google Scholar
[12]
R. Ma, C. Peng, Z. Cai, R. Wang, Z. Zhou, X. Li, X. Cao, Enhanced strength of the selective laser melted Al-Mg-Sc-Zr alloy by cold rolling, Mater. Sci. Eng. A. (2020). https://doi.org/10.1016/j.msea.2020.138975.
DOI: 10.1016/j.msea.2020.138975
Google Scholar
[13]
V.M. Segal, Equal channel angular extrusion: from macromechanics to structure formation, Mater. Sci. Eng. A. 271 (1999) 322–333. https://doi.org/10.1016/S0921-5093(99)00248-8.
DOI: 10.1016/s0921-5093(99)00248-8
Google Scholar
[14]
T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035–7059. https://doi.org/10.1016/j.actamat.2013.08.018.
DOI: 10.1016/j.actamat.2013.08.018
Google Scholar
[15]
P. Snopiński, M. Król, Microstructure, Mechanical Properties and Strengthening Mechanism Analysis in an AlMg5 Aluminium Alloy Processed by ECAP and Subsequent Ageing, Metals (Basel). (2018). https://doi.org/10.3390/met8110969.
DOI: 10.3390/met8110969
Google Scholar
[16]
P. Snopiński, T. Tański, K. Matus, S. Rusz, Microstructure, grain refinement and hardness of Al–3%Mg aluminium alloy processed by ECAP with helical die, Arch. Civ. Mech. Eng. (n.d.). https://doi.org/10.1016/j.acme.2018.11.003.
DOI: 10.1016/j.acme.2018.11.003
Google Scholar
[17]
R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Plastic deformation of alloys with submicron-grained structure, Mater. Sci. Eng. A. 137 (1991) 35–40. https://doi.org/http://dx.doi.org/ 10.1016/0921-5093(91)90316-F.
DOI: 10.1016/0921-5093(91)90316-f
Google Scholar
[18]
T.G. Langdon, The principles of grain refinement in equal-channel angular pressing, Mater. Sci. Eng. A. 462 (2007) 3–11. https://doi.org/10.1016/j.msea.2006.02.473.
DOI: 10.1016/j.msea.2006.02.473
Google Scholar
[19]
S.S. Zhang, T.W. Xu, M.X. Sun, B.J. Lv, X.H. Ma, Effects of microstructure and texture evolution during the industrial ECAE and recrystallization on tensile properties of pure niobium, Mater. Sci. Eng. A. 807 (2021) 140896. https://doi.org/10.1016/j.msea.2021.140896.
DOI: 10.1016/j.msea.2021.140896
Google Scholar
[20]
A.B. Varadala, S.N. Gurugubelli, S. Bandaru, Enhancement of structural and mechanical behavior of Al-Mg alloy processed by ECAE, in: Mater. Today Proc., Elsevier Ltd, 2019: p.2147–2151. https://doi.org/10.1016/j.matpr.2019.06.654.
DOI: 10.1016/j.matpr.2019.06.654
Google Scholar
[21]
B. Mani, M. Jahedi, M.H. Paydar, Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature, Powder Technol. (2012). https://doi.org/10.1016/j.powtec.2011.11.034.
DOI: 10.1016/j.powtec.2011.11.034
Google Scholar
[22]
B. Mani, M. Jahedi, M.H. Paydar, A modification on ECAP process by incorporating torsional deformation, Mater. Sci. Eng. A. 528 (2011) 4159–4165. https://doi.org/http://dx.doi.org/ 10.1016/j.msea.2011.02.015.
DOI: 10.1016/j.msea.2011.02.015
Google Scholar
[23]
N. FAKHAR, F. FERESHTEH-SANIEE, R. MAHMUDI, Significant improvements in mechanical properties of AA5083 aluminum alloy using dual equal channel lateral extrusion, Trans. Nonferrous Met. Soc. China (English Ed. 26 (2016) 3081–3090. https://doi.org/10.1016/S1003-6326(16)64440-0.
DOI: 10.1016/s1003-6326(16)64440-0
Google Scholar
[24]
A. Hasani, M. Sepsi, S. Feyzi, L.S. Toth, Deformation field and texture analysis in T-ECAP using a flow function, Mater. Charact. 173 (2021) 110912. https://doi.org/10.1016/ j.matchar.2021.110912.
DOI: 10.1016/j.matchar.2021.110912
Google Scholar
[25]
X. Ma, M.R. Barnett, Y.H. Kim, Forward extrusion through steadily rotating conical dies. Part I: Experiments, Int. J. Mech. Sci. 46 (2004) 449–464. https://doi.org/10.1016/j.ijmecsci. 2004.03.017.
DOI: 10.1016/j.ijmecsci.2004.03.017
Google Scholar
[26]
V. V. Stolyarov, R. Lapovok, I.G. Brodova, P.F. Thomson, Ultrafine-grained Al-5 wt.% Fe alloy processed by ECAP with backpressure, Mater. Sci. Eng. A. 357 (2003) 159–167. https://doi.org/10.1016/S0921-5093(03)00215-6.
DOI: 10.1016/s0921-5093(03)00215-6
Google Scholar
[27]
J.F. Derakhshan, M.H. Parsa, H.R. Jafarian, Microstructure and mechanical properties variations of pure aluminum subjected to one pass of ECAP-Conform process, Mater. Sci. Eng. A. 747 (2019) 120–129. https://doi.org/10.1016/j.msea.2019.01.058.
DOI: 10.1016/j.msea.2019.01.058
Google Scholar
[28]
H. Bohluli, K. Khalili, S.M.H. Seyedkashi, An investigation on twist extrusion followed by forward extrusion in production of aluminum–copper bimetallic bar, CIRP J. Manuf. Sci. Technol. 33 (2021) 52–62. https://doi.org/10.1016/j.cirpj.2021.02.010.
DOI: 10.1016/j.cirpj.2021.02.010
Google Scholar
[29]
Y. Beygelzimer, D. Prilepo, R. Kulagin, V. Grishaev, O. Abramova, V. Varyukhin, M. Kulakov, Planar Twist Extrusion versus Twist Extrusion, J. Mater. Process. Technol. 211 (2011) 522–529. https://doi.org/10.1016/j.jmatprotec.2010.11.006.
DOI: 10.1016/j.jmatprotec.2010.11.006
Google Scholar
[30]
H. Bisadi, M.R. Mohamadi, H. Miyanaji, M. Abdoli, A Modification on ECAP Process by Incorporating Twist Channel, J. Mater. Eng. Perform. 22 (2013) 875–881. https://doi.org/10.1007/s11665-012-0323-z.
DOI: 10.1007/s11665-012-0323-z
Google Scholar
[31]
D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, Z. Horita, Plastic flow, structure and mechanical properties in pure Al deformed by twist extrusion, Mater. Sci. Eng. A. 519 (2009) 105–111. https://doi.org/10.1016/j.msea.2009.06.005.
DOI: 10.1016/j.msea.2009.06.005
Google Scholar
[32]
G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953) 22–31. https://doi.org/http://dx.doi.org/10.1016/0001-6160(53)90006-6.
DOI: 10.1016/0001-6160(53)90006-6
Google Scholar
[33]
D.G. Eskin, A.A.B.T.-M.P.D. Aksenov, eds., Appendix 5 - REFERENCES ON SOME CALCULATED AL-BASED SYSTEMS A2 - Belov, Nikolay A., (2005) 396–398. https://doi.org/https://doi.org/10.1016/B978-008044537-3/50015-9.
Google Scholar
[34]
T. Tański, P. Snopiński, W. Borek, Strength and structure of AlMg<inf>3</inf> alloy after ECAP and post-ECAP processing, Mater. Manuf. Process. 32 (2017). https://doi.org/10.1080/10426914.2016.1257131.
DOI: 10.1080/10426914.2016.1257131
Google Scholar
[35]
T. Tański, P. Snopiński, K. Prusik, M. Sroka, The effects of room temperature ECAP and subsequent aging on the structure and properties of the Al-3%Mg aluminium alloy, Mater. Charact. 133 (2017). https://doi.org/10.1016/j.matchar.2017.09.039.
DOI: 10.1016/j.matchar.2017.09.039
Google Scholar
[36]
M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, The use of severe plastic deformation for microstructural control, Mater. Sci. Eng. A. 324 (2002) 82–89. https://doi.org/10.1016/S0921-5093(01)01288-6.
DOI: 10.1016/s0921-5093(01)01288-6
Google Scholar
[37]
T. Tański, P. Snopiński, W. Borek, Strength and structure of AlMg3 alloy after ECAP and post-ECAP processing, Mater. Manuf. Process. 0 (n.d.) 1–7. https://doi.org/10.1080/ 10426914.2016.1257131.
DOI: 10.1080/10426914.2016.1257131
Google Scholar
[38]
A. Mogucheva, E. Babich, B. Ovsyannikov, R. Kaibyshev, Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure, Mater. Sci. Eng. A. 560 (2013) 178–192. https://doi.org/http://dx.doi.org/10.1016/j.msea.2012.09.054.
DOI: 10.1016/j.msea.2012.09.054
Google Scholar
[39]
H. Bin Geng, S.B. Kang, B.K. Min, High temperature tensile behavior of ultra-fine grained Al-3.3Mg-0.2Sc-0.2Zr alloy by equal channel angular pressing, Mater. Sci. Eng. A. 373 (2004) 229–238. https://doi.org/10.1016/j.msea.2004.01.047.
DOI: 10.1016/j.msea.2004.01.047
Google Scholar
[40]
A. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, M. Kawazoe, Fatigue properties of 5056 Al-Mg alloy produced by equal-channel angular pressing, Nanostructured Mater. 11 (1999) 925–934. https://doi.org/10.1016/S0965-9773(99)00392-X.
DOI: 10.1016/s0965-9773(99)00392-x
Google Scholar
[41]
D. Singh, P.N. Rao, R. Jayaganthan, Effect of deformation temperature on mechanical properties of ultrafine grained Al–Mg alloys processed by rolling, Mater. Des. 50 (2013) 646–655. https://doi.org/10.1016/j.matdes.2013.02.068.
DOI: 10.1016/j.matdes.2013.02.068
Google Scholar
[42]
K.T. Park, H.J. Lee, C.S. Lee, D.H. Shin, Effect of post-rolling after ECAP on deformation behavior of ECAPed commercial Al-Mg alloy at 723 K, Mater. Sci. Eng. A. 393 (2005) 118–124. https://doi.org/10.1016/j.msea.2004.09.066.
DOI: 10.1016/j.msea.2004.09.066
Google Scholar
[43]
C.P. Chang, P.L. Sun, P.W. Kao, Deformation induced grain boundaries in commercially pure aluminium, Acta Mater. 48 (2000) 3377–3385. https://doi.org/http://dx.doi.org/10.1016/ S1359-6454(00)00138-5.
DOI: 10.1016/s1359-6454(00)00138-5
Google Scholar
[44]
M. Liu, H.J. Roven, Y. Yu, J.C. Werenskiold, Deformation structures in 6082 aluminium alloy after severe plastic deformation by equal-channel angular pressing, Mater. Sci. Eng. A. 483–484 (2008) 59–63. https://doi.org/10.1016/j.msea.2006.09.144.
DOI: 10.1016/j.msea.2006.09.144
Google Scholar
[45]
H. Alihosseini, G. Faraji, A.F. Dizaji, K. Dehghani, Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE), Mater. Charact. 68 (2012) 14–21. https://doi.org/http://dx.doi.org/10.1016/j.matchar.2012.03.004.
DOI: 10.1016/j.matchar.2012.03.004
Google Scholar
[46]
I. Saxl, A. Kalousová, L. Ilucová, V. Sklenička, Grain and subgrain boundaries in ultrafine-grained materials, Mater. Charact. 60 (2009) 1163–1167. https://doi.org/http://dx.doi.org/ 10.1016/j.matchar.2009.03.010.
DOI: 10.1016/j.matchar.2009.03.010
Google Scholar
[47]
T. Ungár, L. Balogh, Y.T. Zhu, Z. Horita, C. Xu, T.G. Langdon, Using X-ray microdiffraction to determine grain sizes at selected positions in disks processed by high-pressure torsion, Mater. Sci. Eng. A. 444 (2007)153–156. https://doi.org/http://dx.doi.org/10.1016/j.msea.2006.08. 059.
DOI: 10.1016/j.msea.2006.08.059
Google Scholar
[48]
Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander, H.-E. Ekström, Strengthening mechanisms in solid solution aluminum alloys, Metall. Mater. Trans. A. 37 (2006) 1999–2006. https://doi.org/10.1007/s11661-006-0142-7.
DOI: 10.1007/s11661-006-0142-7
Google Scholar
[49]
N.Q. Chinh, J. Gubicza, T.G. Langdon, Characteristics of face-centered cubic metals processed by equal-channel angular pressing, J. Mater. Sci. 42 (2007) 1594–1605. https://doi.org/10.1007/s10853-006-0900-3.
DOI: 10.1007/s10853-006-0900-3
Google Scholar