[1]
J. Cui, H.J. Roven, Recycling of automotive aluminum, Transactions of Nonferrous Metals Society of China 20 (2010) 2057-2063.
DOI: 10.1016/s1003-6326(09)60417-9
Google Scholar
[2]
S.K. Das, Designing Aluminium Alloys for a Recycling Friendly World, Mater. Sci. Forum 519-521 (2006) 1239-1244.
DOI: 10.4028/www.scientific.net/msf.519-521.1239
Google Scholar
[3]
G. Gilstad, J. Hammervold, Life Cycle Assessment of Secondary Aluminium Refining, in Light Metals 2014, J. Grandfield, Editor. 2016, Springer International Publishing: Cham. pp.901-906.
DOI: 10.1002/9781118888438.ch150
Google Scholar
[4]
M. Kondo, H. Maeda, M. Mizuguchi, The production of high-purity aluminum in Japan, JOM 42 (1990) 36-37.
DOI: 10.1007/bf03220434
Google Scholar
[5]
D.C. Curtolo, M.J. Rodriguez-Rojas, S. Friedrich, B. Friedrich, Alternative fractional crystallization-based methods to produce high-purity aluminum, Journal of Materials Research and Technology 12 (2021) 796-806.
DOI: 10.1016/j.jmrt.2021.03.025
Google Scholar
[6]
S. Venditti, D. Eskin, A. Jacot, Fractional Solidification for Purification of Recycled Aluminium Alloys, Light Metals 2020 (2020) 1110-1118.
DOI: 10.1007/978-3-030-36408-3_150
Google Scholar
[7]
W. Sillekens, D. Verdoes, J.S. Van WESTURM. Refining aluminium scrap by means of fractional crystallisation: technical feasibility. in Proceeding of the Fourth ASM International Conference and Exhibition on the Recycling of Metals, ASM Europe. (1999).
Google Scholar
[8]
B. Mehmetaj, O. Bruinsma, W. Kool, P. Jansens, L. Katgerman. Aluminium scrap recycling with solid layer fractional crystallization. in 15th International Symposium on Industrial Crystallization (ISIC-15). 2002. Sorrento, Italy.
Google Scholar
[9]
T. Sotome, M. Ohtaki. Application of fractional crystallization for refining of molten aluminum scrap. in ICAA-6: 6 th International Conference on Aluminium Alloys. 1998. Toyohashi, Japan.
Google Scholar
[10]
J.A. Muñiz-Lerma, M. Paliwal, I.-H. Jung, M. Brochu, Fractional Crystallization Model of Multicomponent Aluminum Alloys: A Case Study of Aircraft Recycling, Metall. Mater. Trans. B 48 (2017) 1024-1034.
DOI: 10.1007/s11663-016-0903-7
Google Scholar
[11]
L. Guo, X. Wen, Q. Bao, Z. Guo, Removal of Tramp Elements within 7075 Alloy by Super-Gravity Aided Rheorefining Method, Metals 8 (2018) 701.
DOI: 10.3390/met8090701
Google Scholar
[12]
Y. Murakami, K. Miwa, M. Kito, T. Honda, N. Kanetake, S. Tada, Fluidity Evaluation of the AC4CH (A356) Aluminum Alloy Semi-Solid Slurry Made by Mechanical Vibration Method, Materials Transactions 57 (2016) 168-173.
DOI: 10.2320/matertrans.f-m2015838
Google Scholar
[13]
Y. Murakami, K. Miwa, M. Kito, T. Honda, N. Kanetake, S. Tada, Effects of Mechanical Vibration Factors on Size and Shape of Solid Particles in JIS AC4CH Aluminum Alloy Semi-Solid Slurry, Materials Transactions 57 (2016) 163-167.
DOI: 10.2320/matertrans.f-m2015837
Google Scholar
[14]
Y. Murakami, K. Miwa, M. Kito, T. Honda, N. Omura, Development of Slurry Preparation Method by Applying Mechanical Vibration, Solid State Phenomena 285 (2019) 333-338.
DOI: 10.4028/www.scientific.net/ssp.285.333
Google Scholar
[15]
Y. Murakami, N. Omura. Reduction of Impurity Elements by Applying Electromagnetic Stirring in Fractional Crystallization. in Light Metals 2021: 50th Anniversary Edition. 2021. Springer International Publishing.
DOI: 10.1007/978-3-030-65396-5_107
Google Scholar
[16]
L. Li, R.F. Zhou, Q. Cen, D. Lu, Y. Jiang, R. Zhou, Effect of cooling rate on the microstructure of semi-solid Al–25Si–2Fe alloy during electromagnetic stirring, Transactions of the Indian Institute of Metals 66 (2013) 163-169.
DOI: 10.1007/s12666-012-0239-1
Google Scholar
[17]
Z. Zhang, X. Chen, J. Xu, L. Shi, Numerical simulation on electromagnetic field, flow field and temperature field in semisolid slurry preparation by A-EMS, Rare Metals 29 (2010) 635-641.
DOI: 10.1007/s12598-010-0184-2
Google Scholar
[18]
Y. Zhang, Y. Liu, Q. Zhang, Z. Cao, X. Cui, Y. Wang, Microstructural evolution of thixomolded AZ91D magnesium alloy with process parameters variation, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 444 (2007) 251-256.
DOI: 10.1016/j.msea.2006.08.078
Google Scholar
[19]
K. Miwa, T. Kakamu, T. Ohashi, Eutectic Structure of Al-11%Si Alloys Solidified under Stirring, Transactions of the Japan Institute of Metals 26 (1985) 549-556.
DOI: 10.2320/matertrans1960.26.549
Google Scholar
[20]
M. Li, Y. Murakami, I. Matsui, N. Omura, S. Tada, Imposition Time Dependent Microstructure Formation in 7150 Aluminum Alloy Solidified by an Electromagnetic Stirring Technique, Mater. Trans. 59 (2018) 1603-1609.
DOI: 10.2320/matertrans.m2017357
Google Scholar
[21]
J.R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys. 1993: ASM International.
Google Scholar