[1]
I. Polmear. Cast aluminium alloys, in: Light Alloys From Traditional Alloys to Nanocrystals, Elsevier, 2005, pp.205-235.
DOI: 10.1016/b978-075066371-7/50008-6
Google Scholar
[2]
X. Dong, H. Yang, X. Zhu, S. Ji. High strength and ductility aluminium alloy processed by high pressure die casting, J. Alloys Compd. 773, (2019), 86-96.
DOI: 10.1016/j.jallcom.2018.09.260
Google Scholar
[3]
M. Rosso, I. Peter. Defect control on Al castings for excellent quality and improved performances through novel Rheocasting processes, in: Conference TMS Annual Meeting, (2012).
DOI: 10.1002/9781118357002.ch52
Google Scholar
[4]
A. Pola, M. Tocci, P. Kapranos. Microstructure and properties of semi-solid aluminum alloys: A literature review, Metals, 8 (2018) 181.
DOI: 10.3390/met8030181
Google Scholar
[5]
G. S. Schajer. Practical Residual Stress Measurement Methods, John Wiley & Sons, New York (2013).
Google Scholar
[6]
F. Kandil, J. Lord, A. Fry, P. Grant. A review of residual stress measurement methods - A guide to technical selection. NPL Mater Cent (2001) 1–42.
Google Scholar
[7]
J. E. Wyatt, J. T. Berry. A new technique for the determination of superficial residual stresses associated with machining and other manufacturing processes, J. Mater. Process. Technol. 171 (2006)132–140.
DOI: 10.1016/j.jmatprotec.2005.06.067
Google Scholar
[8]
T. Tsakalakos, M. C. Croft, N. M. Jisrawi, R. L. Holtz, Z. Zhong. Measurement of residual stress distributions by energy dispersive X-ray diffraction synchrotron radiation, Proc. Int. Offshore Polar Eng. Conf. (2006) 57–64.
Google Scholar
[9]
M. I. Ripley. Residual stress measurement using neutrons, Mater. Forum (2006) 219–224.
Google Scholar
[10]
M. E. Fitzpatrick, A. T. Fry, P. Holdway,F. Kandil, J. Shackleton, L. Suominen. Determination of Residual Stresses by X-ray Diffraction, National Physical Laboratory (2002) 52.
Google Scholar
[11]
J. Guo, H. Fu, B. Pan, R. Kang. Recent progress of residual stress measurement methods: A review,Chinese J. Aeronaut. (2020).
Google Scholar
[12]
C. H. Gur. Review of Residual Stress Measurement by Magnetic Barkhausen Noise Technique, Mater Perform Charact (2018).
Google Scholar
[13]
A. Karabutov, A. Devichensky, A. Ivochkin, M. Lyamshev, I. Pelivanov, U. Rohadgi, V. Solomatin, M. Subudhi. Laser ultrasonic diagnostics of residual stress, Ultrasonics, 48 (2008) 631–635.
DOI: 10.1016/j.ultras.2008.07.006
Google Scholar
[14]
Y. Zhan, C. Liu, X. Kong, Z. Lin. Experiment and numerical simulation for laser ultrasonic measurement of residual stress, Ultrasonics, 73 (2016) 271-276.
DOI: 10.1016/j.ultras.2016.08.013
Google Scholar
[15]
G. S. Schajer. Relaxation Methods for Measuring Residual Stresses: Techniques and Opportunities, Exp Mech, 50,8 (2010)1117–1127.
DOI: 10.1007/s11340-010-9386-7
Google Scholar
[16]
N. Gautam, S. Anand Kumar, P. R. Mondi P.R. Evaluation methods for residual stress measurement in large components, Mater. Today Proc. (2020).
Google Scholar
[17]
S. Nervi, B. A. Szabó. On the estimation of residual stresses by the crack compliance method, Comput Method Appl Mech. Eng., 196 (2007) 3577–3584.
DOI: 10.1016/j.cma.2006.10.037
Google Scholar
[18]
A. R. Hosseinzadeh, A. H. Mahmoudi. An approach for Knoop and Vickers indentations to measure equi-biaxial residual stresses and material properties: A comprehensive comparison, Mech. Mater., 134 (2019) 153–164.
DOI: 10.1016/j.mechmat.2019.04.010
Google Scholar
[19]
Y. A. Kumar, S. Shafee, B. Praveen. Experimental investigation of residual stresses in a diecasted aluminium flywheel, Mater. Today Proc. (2019).
DOI: 10.1016/j.matpr.2019.07.628
Google Scholar
[20]
R. A. Ainsworth, J. K. Sharples, S. D. Smith. Effects of residual stresses on fracture behaviour - experimental results and assessment methods, J. Strain Anal. Eng. Des. (2000).
Google Scholar
[21]
H. Wang; W. Woo, S. Y. Lee, G. An, D. K. Kim. Correlation of localized residual stresses with ductile fracture toughness using in situ neutron diffraction and finite element modelling, Int. J. Mech. Sci., 160 (2019) 332-342.
DOI: 10.1016/j.ijmecsci.2019.06.013
Google Scholar
[22]
J. O. Kristiansson. Thermal stresses in the early stage of solidification of steel, J. Therm. Stress. 5,3–4 (1982) 315–330.
DOI: 10.1080/01495738208942153
Google Scholar
[23]
S. Viswanathan, D. Apelian, R. J. Donahue, B. DasGupta, M. Gywn; J. L. Jorstad, R.W. Monroe, M. Sahoo, T. E. Prucha, D. Twarog. Casting (Vol. 15), ASM International, in ASM Handbook. (2011) 449–461.
DOI: 10.31399/asm.hb.v15.9781627081870
Google Scholar
[24]
S. Kianfar, E. Aghaie, J. Stroh, D. Sediako, J. Tjong. Residual stress, microstructure, and mechanical properties analysis of HPDC aluminum engine block with cast-in iron liners, Mater. Today Commun., 26 (2020) 101814.
DOI: 10.1016/j.mtcomm.2020.101814
Google Scholar
[25]
M. Vashista, S. Paul. Philosophical Magazine Correlation between full width at half maximum (FWHM) of XRD peak with residual stress on ground surfaces Correlation between full width at half maximum (FWHM) of XRD peak with residual stress on ground surfaces, Philos Mag, 92 33 (2012) 4194–4204.
DOI: 10.1080/14786435.2012.704429
Google Scholar
[26]
M. Gelfi, E. Bontempi, R. Roberti, L. E. Depero. X-ray diffraction Debye Ring Analysis for STress measurement (DRAST): A new method to evaluate residual stresses, Acta Mater., 52 3 (2004) 583–589.
DOI: 10.1016/j.actamat.2003.09.041
Google Scholar
[27]
B. L. Boyce, T. A. Furnish, H. A. Padilla II, D. Van Campen, A. Mehta. Detecting rare, abnormally large grains by x-ray diffraction, J mat sci., 50 (2015) 6719-6729.
DOI: 10.1007/s10853-015-9226-3
Google Scholar
[28]
H. Dini, N. E. Andersson, A. E. W. Jarfors. Effect of Process Parameters on Distortion and Residual Stress of High-Pressure Die-Cast AZ91D Components, Int. J. Met., 12 3 (2018) 487–497.
DOI: 10.1007/s40962-017-0186-z
Google Scholar
[29]
H. Dini, N. E. Andersson, A. E. W. Jarfors. Effect of Process Parameters on Distortion and Residual Stress in High-Pressure Die Cast AZ91D Components After Clean Blasting and Painting, Int. J. Met., 15 1 (2021) 241–258.
DOI: 10.1007/s40962-020-00448-9
Google Scholar
[30]
S. P. Midson. Industrial applications for aluminum semi-solid castings, Solid State Phenomena, 217–218 (2014) 487–495.
DOI: 10.4028/www.scientific.net/ssp.217-218.487
Google Scholar
[31]
G. Li, H. Lu, X. Hu, F. Lin, X. Li, Q. Zhu. Current progress in rheoforming of wrought aluminum alloys: A review, Metals,10 2 (2020).
DOI: 10.3390/met10020238
Google Scholar
[32]
J. Feng. Failure Analysis of Rheocast Cylinder Head Covers of Hypereutectic Al–Si Alloys, J. Fail. Anal. Prev. 21 2 (2020) 488–493.
DOI: 10.1007/s11668-020-01110-6
Google Scholar
[33]
M. Rosso, I. Peter, G. Chiarmetta, I. Gattelli. Extremely light weight rheocast components for automotive space frame, Solid State Phenomena, (2013) 192–193.
DOI: 10.4028/www.scientific.net/ssp.192-193.545
Google Scholar
[34]
X. Gao, T. Zhang, M. Hayden, C. Roe. Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy, Int J Plast., 25 12 (2009) 2366–2382.
DOI: 10.1016/j.ijplas.2009.03.006
Google Scholar
[35]
J. Zhou, X. Gao, M. Hayden, J. A. Joyce. Modeling the ductile fracture behavior of an aluminum alloy 5083-H116 including the residual stress effect, Eng. Fract. Mech., 85 (2012) 103–116.
DOI: 10.1016/j.engfracmech.2012.02.014
Google Scholar
[36]
M. Rosso, I. Peter, G. Chiarmetta, I. Gattelli. Development of industrial components by improved by improved rheocasting system, in: 11th International Conference on Semi-Solid Processing of Alloys and Composites S2P2010 (2010).
Google Scholar