About Residual Stress State of Castings: The Case of HPDC Parts and Possible Advantages through Semi-Solid Processes

Article Preview

Abstract:

Nowadays, one of the most crucial focus in the aluminium-foundry sector is the production of high-quality castings. Mainly, High-Pressure Die Casting (HPDC) is broadly adopted, since by this process is possible to realize aluminium castings with thin walls and high specific mechanical properties. On the other hand, this casting process may cause tensile states into the castings, namely residual stresses. Residual stresses may strongly affect the life of the product causing premature failure of the casting. Various methods can assess these tensile states, but the non-destructive X-Ray method is the most commonly adopted. Namely, in this work, the residual stress analysis has been performed through Sinto-Pulstec μ-X360s. Detailed measurements have been done on powertrain components realized in aluminium alloy EN AC 46000 through HPDC processes to understand and prevent dangerous residual stress state into the aluminium castings. Furthermore, a comparison with stresses induced by Rheocasting processes is underway. In fact, it is well known that Semi-Solid metal forming combines the advantages of casting and forging, solving safety and environmental problems and possibly even the residual stress state can be positively affected.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 327)

Pages:

272-278

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Polmear. Cast aluminium alloys, in: Light Alloys From Traditional Alloys to Nanocrystals, Elsevier, 2005, pp.205-235.

DOI: 10.1016/b978-075066371-7/50008-6

Google Scholar

[2] X. Dong, H. Yang, X. Zhu, S. Ji. High strength and ductility aluminium alloy processed by high pressure die casting, J. Alloys Compd. 773, (2019), 86-96.

DOI: 10.1016/j.jallcom.2018.09.260

Google Scholar

[3] M. Rosso, I. Peter. Defect control on Al castings for excellent quality and improved performances through novel Rheocasting processes, in: Conference TMS Annual Meeting, (2012).

DOI: 10.1002/9781118357002.ch52

Google Scholar

[4] A. Pola, M. Tocci, P. Kapranos. Microstructure and properties of semi-solid aluminum alloys: A literature review, Metals, 8 (2018) 181.

DOI: 10.3390/met8030181

Google Scholar

[5] G. S. Schajer. Practical Residual Stress Measurement Methods, John Wiley & Sons, New York (2013).

Google Scholar

[6] F. Kandil, J. Lord, A. Fry, P. Grant. A review of residual stress measurement methods - A guide to technical selection. NPL Mater Cent (2001) 1–42.

Google Scholar

[7] J. E. Wyatt, J. T. Berry. A new technique for the determination of superficial residual stresses associated with machining and other manufacturing processes, J. Mater. Process. Technol. 171 (2006)132–140.

DOI: 10.1016/j.jmatprotec.2005.06.067

Google Scholar

[8] T. Tsakalakos, M. C. Croft, N. M. Jisrawi, R. L. Holtz, Z. Zhong. Measurement of residual stress distributions by energy dispersive X-ray diffraction synchrotron radiation, Proc. Int. Offshore Polar Eng. Conf. (2006) 57–64.

Google Scholar

[9] M. I. Ripley. Residual stress measurement using neutrons, Mater. Forum (2006) 219–224.

Google Scholar

[10] M. E. Fitzpatrick, A. T. Fry, P. Holdway,F. Kandil, J. Shackleton, L. Suominen. Determination of Residual Stresses by X-ray Diffraction, National Physical Laboratory (2002) 52.

Google Scholar

[11] J. Guo, H. Fu, B. Pan, R. Kang. Recent progress of residual stress measurement methods: A review,Chinese J. Aeronaut. (2020).

Google Scholar

[12] C. H. Gur. Review of Residual Stress Measurement by Magnetic Barkhausen Noise Technique, Mater Perform Charact (2018).

Google Scholar

[13] A. Karabutov, A. Devichensky, A. Ivochkin, M. Lyamshev, I. Pelivanov, U. Rohadgi, V. Solomatin, M. Subudhi. Laser ultrasonic diagnostics of residual stress, Ultrasonics, 48 (2008) 631–635.

DOI: 10.1016/j.ultras.2008.07.006

Google Scholar

[14] Y. Zhan, C. Liu, X. Kong, Z. Lin. Experiment and numerical simulation for laser ultrasonic measurement of residual stress, Ultrasonics, 73 (2016) 271-276.

DOI: 10.1016/j.ultras.2016.08.013

Google Scholar

[15] G. S. Schajer. Relaxation Methods for Measuring Residual Stresses: Techniques and Opportunities, Exp Mech, 50,8 (2010)1117–1127.

DOI: 10.1007/s11340-010-9386-7

Google Scholar

[16] N. Gautam, S. Anand Kumar, P. R. Mondi P.R. Evaluation methods for residual stress measurement in large components, Mater. Today Proc. (2020).

Google Scholar

[17] S. Nervi, B. A. Szabó. On the estimation of residual stresses by the crack compliance method, Comput Method Appl Mech. Eng., 196 (2007) 3577–3584.

DOI: 10.1016/j.cma.2006.10.037

Google Scholar

[18] A. R. Hosseinzadeh, A. H. Mahmoudi. An approach for Knoop and Vickers indentations to measure equi-biaxial residual stresses and material properties: A comprehensive comparison, Mech. Mater., 134 (2019) 153–164.

DOI: 10.1016/j.mechmat.2019.04.010

Google Scholar

[19] Y. A. Kumar, S. Shafee, B. Praveen. Experimental investigation of residual stresses in a diecasted aluminium flywheel, Mater. Today Proc. (2019).

DOI: 10.1016/j.matpr.2019.07.628

Google Scholar

[20] R. A. Ainsworth, J. K. Sharples, S. D. Smith. Effects of residual stresses on fracture behaviour - experimental results and assessment methods, J. Strain Anal. Eng. Des. (2000).

Google Scholar

[21] H. Wang; W. Woo, S. Y. Lee, G. An, D. K. Kim. Correlation of localized residual stresses with ductile fracture toughness using in situ neutron diffraction and finite element modelling, Int. J. Mech. Sci., 160 (2019) 332-342.

DOI: 10.1016/j.ijmecsci.2019.06.013

Google Scholar

[22] J. O. Kristiansson. Thermal stresses in the early stage of solidification of steel, J. Therm. Stress. 5,3–4 (1982) 315–330.

DOI: 10.1080/01495738208942153

Google Scholar

[23] S. Viswanathan, D. Apelian, R. J. Donahue, B. DasGupta, M. Gywn; J. L. Jorstad, R.W. Monroe, M. Sahoo, T. E. Prucha, D. Twarog. Casting (Vol. 15), ASM International, in ASM Handbook. (2011) 449–461.

DOI: 10.31399/asm.hb.v15.9781627081870

Google Scholar

[24] S. Kianfar, E. Aghaie, J. Stroh, D. Sediako, J. Tjong. Residual stress, microstructure, and mechanical properties analysis of HPDC aluminum engine block with cast-in iron liners, Mater. Today Commun., 26 (2020) 101814.

DOI: 10.1016/j.mtcomm.2020.101814

Google Scholar

[25] M. Vashista, S. Paul. Philosophical Magazine Correlation between full width at half maximum (FWHM) of XRD peak with residual stress on ground surfaces Correlation between full width at half maximum (FWHM) of XRD peak with residual stress on ground surfaces, Philos Mag, 92 33 (2012) 4194–4204.

DOI: 10.1080/14786435.2012.704429

Google Scholar

[26] M. Gelfi, E. Bontempi, R. Roberti, L. E. Depero. X-ray diffraction Debye Ring Analysis for STress measurement (DRAST): A new method to evaluate residual stresses, Acta Mater., 52 3 (2004) 583–589.

DOI: 10.1016/j.actamat.2003.09.041

Google Scholar

[27] B. L. Boyce, T. A. Furnish, H. A. Padilla II, D. Van Campen, A. Mehta. Detecting rare, abnormally large grains by x-ray diffraction, J mat sci., 50 (2015) 6719-6729.

DOI: 10.1007/s10853-015-9226-3

Google Scholar

[28] H. Dini, N. E. Andersson, A. E. W. Jarfors. Effect of Process Parameters on Distortion and Residual Stress of High-Pressure Die-Cast AZ91D Components, Int. J. Met., 12 3 (2018) 487–497.

DOI: 10.1007/s40962-017-0186-z

Google Scholar

[29] H. Dini, N. E. Andersson, A. E. W. Jarfors. Effect of Process Parameters on Distortion and Residual Stress in High-Pressure Die Cast AZ91D Components After Clean Blasting and Painting, Int. J. Met., 15 1 (2021) 241–258.

DOI: 10.1007/s40962-020-00448-9

Google Scholar

[30] S. P. Midson. Industrial applications for aluminum semi-solid castings, Solid State Phenomena, 217–218 (2014) 487–495.

DOI: 10.4028/www.scientific.net/ssp.217-218.487

Google Scholar

[31] G. Li, H. Lu, X. Hu, F. Lin, X. Li, Q. Zhu. Current progress in rheoforming of wrought aluminum alloys: A review, Metals,10 2 (2020).

DOI: 10.3390/met10020238

Google Scholar

[32] J. Feng. Failure Analysis of Rheocast Cylinder Head Covers of Hypereutectic Al–Si Alloys, J. Fail. Anal. Prev. 21 2 (2020) 488–493.

DOI: 10.1007/s11668-020-01110-6

Google Scholar

[33] M. Rosso, I. Peter, G. Chiarmetta, I. Gattelli. Extremely light weight rheocast components for automotive space frame, Solid State Phenomena, (2013) 192–193.

DOI: 10.4028/www.scientific.net/ssp.192-193.545

Google Scholar

[34] X. Gao, T. Zhang, M. Hayden, C. Roe. Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy, Int J Plast., 25 12 (2009) 2366–2382.

DOI: 10.1016/j.ijplas.2009.03.006

Google Scholar

[35] J. Zhou, X. Gao, M. Hayden, J. A. Joyce. Modeling the ductile fracture behavior of an aluminum alloy 5083-H116 including the residual stress effect, Eng. Fract. Mech., 85 (2012) 103–116.

DOI: 10.1016/j.engfracmech.2012.02.014

Google Scholar

[36] M. Rosso, I. Peter, G. Chiarmetta, I. Gattelli. Development of industrial components by improved by improved rheocasting system, in: 11th International Conference on Semi-Solid Processing of Alloys and Composites S2P2010 (2010).

Google Scholar