A Review on Mechanical Properties of Deformation Mechanism of Tubular Nanostructures: Molecular Dynamics Simulations

Article Preview

Abstract:

A molecular dynamic (MD) simulation, which is used for estimating mechanical properties of both microscopic and mesoscopic materials during loading/unloading processes. Understanding the deformation mechanisms of material's internal structure, shape and volume is a key step to enhance its strength and rigidity. Novel nanostructures, nanoparticles and nanocomposites, more efficient, selective, and environmental friendly can be developed and suggested. At the moment, few experimental methods can characterize molecular mechanisms due to their time-consuming and cost-intensive. Therefore, MD simulation allows to gain understanding in structure-to-function relationships involved in the low-dimensional materials. Specifically, MD simulation can be performed on the time scale of nanoseconds, and in three dimensions, it is thus sufficient for the study of the mechanical behaviors and deformation mechanisms at a molecular level. This work reviews the progress in MD simulation of the mechanical properties and structure deformations for various tubular nanomaterials including silicon, carbon and III-V compound nanotubes (NTs), respectively. In particular, we have a detailed description and analysis of the impacts of environmental and structural factors on material strength for the present nanostructures. It is hopeful that this review can provide certain reference for the follow-up research.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 329)

Pages:

79-86

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Blien, P. Steger, N. Hüttner, et al., Quantum capacitance mediated carbon nanotube optomechanics, Nat. Commun. 11 (2020) 1636.

DOI: 10.1038/s41467-020-15433-3

Google Scholar

[2] Z. Huang, P.J. Dyson, Depletion Effect-mediated Association of Carbon Nanotube-Polymer Composites and Their Application as Inexpensive Electrode Support Materials, Nano Lett. 20 (2020) 5353-5358.

DOI: 10.1021/acs.nanolett.0c01718

Google Scholar

[3] J.Y. Huang, S. Chen, Z.Q. Wang, et al., Superplastic carbon nanotubes, Nat., 439 (2006) 281.

Google Scholar

[4] A. Taloni, M. Vodret, G. Costantini, et al., Size effects on the fracture of microscale and nanoscale materials, Nat. Rev. Mater. 3 (2018) 211-224.

DOI: 10.1038/s41578-018-0029-4

Google Scholar

[5] Y.R. Jeng, P.C. Tsai, S.H. Chiang, Effects of grain size and orientation on mechanical and tribological characterizations of nanocrystalline nickel films, Wear 303 (2013) 262-268.

DOI: 10.1016/j.wear.2013.02.019

Google Scholar

[6] P.C. Tsai, Y.R. Jeng, T.H. Fang, A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones, Nanotechnology 18 (2007) 105702.

DOI: 10.1088/0957-4484/18/10/105702

Google Scholar

[7] P.C. Tsai, Y.R. Jeng, Experimental and numerical investigation into the effect of carbon nanotube bucklingon the reinforcement of CNT/Cu composites, Compos. Sci. Tech. 79 (2013) 28-34.

DOI: 10.1016/j.compscitech.2013.02.003

Google Scholar

[8] P.C. Tsai, Y.R. Jeng, Theoretical investigation of thermally induced coalescence mechanism of single-wall carbon nanohorns and their mechanical properties, Comput. Mater. Sci. 88 (2014) 76-80.

DOI: 10.1016/j.commatsci.2014.02.024

Google Scholar

[9] Y.R. Jeng, Y.H. Huang, P.C. Tsai, et al., Tribological Properties of Carbon Nanocapsule Particles as Lubricant Additive, J. Tribol. 136 (2014), 041801.

DOI: 10.1115/1.4027994

Google Scholar

[10] L. Chang, Y.R. Jeng, P.Y. Huang, Modeling and analysis of the meshing losses of involute spur gears in high-speed and high-load conditions, ASME J. Tribol. 135 (2013) 11504.

DOI: 10.1115/1.4024104

Google Scholar

[11] Jeng, Y.R. Jeng, C.M. Tan, Study of nanoindentation using FEM atomic model, ASME J. Tribol. 126 (2004) 767-774.

DOI: 10.1115/1.1792679

Google Scholar

[12] Y.R. Jeng, S.H. Chang, Comparison between the effects of single-pad and double-pad aerostatic bearings with pocketed orifices on bearing stiffness, Tribol. Int. 66 (2013) 12-18.

DOI: 10.1016/j.triboint.2013.04.003

Google Scholar

[13] P.C. Tsai, Y.R. Jeng, Effects of nanotube size and roof-layer coating on viscoelastic properties of hybrid diamond-like carbon and carbon nanotube composites, Carbon 86 (2015) 163-173.

DOI: 10.1016/j.carbon.2015.01.012

Google Scholar

[14] P.C. Tsai, Y.R. Jeng, Coalescence and epitaxial self-assembly of Cu nanoparticles on graphene surface: A molecular dynamics study, Comput. Mater. Sci. 156 (2019) 104-110.

DOI: 10.1016/j.commatsci.2018.09.039

Google Scholar

[15] Y. R. Jeng, P.C. Tsai, T.H. Fang, Effects of temperature and vacancy defects on tensile deformation of single-walled carbon nanotubes, J. Phys. Chem. Solids 65 (2004) 1849-1856.

DOI: 10.1016/j.jpcs.2004.07.001

Google Scholar

[16] Y. R. Jeng, P.C. Tsai, T.H. Fang, Molecular-dynamics studies of bending mechanical properties of empty and C60-filled carbon nanotubes under Nanoindentation, J. Chem. Phys. 122 (2005) 224713.

DOI: 10.1063/1.1924694

Google Scholar

[17] Y. R. Jeng, P.C. Tsai, T.H. Fang, Experimental and numerical investigation into buckling instability of carbon nanotube probes under Nanoindentation, Appl. Phys. Lett. 90 (2007) 161913.

DOI: 10.1063/1.2722579

Google Scholar

[18] Y.R. Jeng, P.C. Tsai, G.Z. Huang, et al., An Investigation into the Mechanical Behavior of Single-Walled Carbon Nanotubes under Uniaxial Tension Using Molecular Statics and Molecular Dynamics Simulations, Comput. Mater. Contin. 348 (2009) 1-17.

Google Scholar

[19] P.C. Tsai, Y. R. Jeng, Y. X. Huang, et al., Buckling characterizations of an individual multi-walled carbon nanotube: Insights from quantitative in situ transmission electron microscope nanoindentation and molecular dynamics, Appl. Phys. Lett. 103 (2013) 53119.

DOI: 10.1063/1.4817668

Google Scholar

[20] Y. R. Jeng, P.C. Tsai, T.H. Fang, Effects of temperature, strain rate, and vacancies on tensile and fatigue behaviors of silicon-based nanotubes, Phys. Rev. B 71, (2005) 085411.

DOI: 10.1103/physrevb.71.085411

Google Scholar

[21] Y. R. Jeng, P.C. Tsai, T.H. Fang, Coalescence, melting, and mechanical characteristics of carbon nanotube junctions, Phys. Rev B 74 (2006) 45406.

DOI: 10.1103/physrevb.74.045406

Google Scholar

[22] Y.R. Jeng, P.C. Tsai T.H. Fang, Molecular dynamics investigation of the mechanical properties of gallium nitride nanotubes under tension and fatigue, Nanotechnology 15 (2004) 1737-1744.

DOI: 10.1088/0957-4484/15/12/006

Google Scholar

[23] Y. R. Jeng, P.C. Tsai, T.H. Fang, Tensile Deformation of Tubular Structures of Nitride-based Nanotubes: Brittle and Weak Behavior, Tamkang J. of Sc. Eng., 8, (2005) 191-195.

Google Scholar

[24] J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B 39 (1989) 5566-5568.

DOI: 10.1103/physrevb.39.5566

Google Scholar

[25] D.W. Brenner, O.A. Shenderova, J. Harrison, et al., A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons, J. Phys. Condens. Matter 14 (2002) 783.

DOI: 10.1088/0953-8984/14/4/312

Google Scholar

[26] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, Mol. Phys. 52 (1984) 2.

Google Scholar

[27] W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31 (1985) 1695.

DOI: 10.1103/physreva.31.1695

Google Scholar

[28] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nat. 363 (1993) 603.

DOI: 10.1038/363603a0

Google Scholar

[29] T. Ozaki, Y. Iwasa, T. Mitani, Stiffness of Single-Walled Carbon Nanotubes under Large Strain, Phys. Rev. Lett. 84 (2000) 1712-1715.

DOI: 10.1103/physrevlett.84.1712

Google Scholar

[30] S.J. Tans, A. R. M. Verchueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nat. 393 (1998) 49-52.

DOI: 10.1038/29954

Google Scholar

[31] J.P. Lu, Elastic Properties of Carbon Nanotubes and Nanoropes, Phys. Rev. Lett. 79 (1997) 1297-1300.

DOI: 10.1103/physrevlett.79.1297

Google Scholar

[32] A. Nan, X. Bai, S.J. Son, et al., Cellular uptake and cytotoxicity of silica nanotubes, Nano Lett., 8 (2008)2150-2154.

DOI: 10.1021/nl0802741

Google Scholar

[33] G. Joshua, H. Rongrui, Y. Zhang, et al., Single-crystal gallium nitride nanotubes, Nat. 422 (2003) 599-602.

Google Scholar

[34] Z. Yao, H. W. C. Postma, L. Balents, et al., Carbon nanotube intramolecular junctions, Nat. 402 (1999) 273.

DOI: 10.1038/46241

Google Scholar

[35] J.C. Charlier, T. W. Ebbesen, Ph. Lambin, Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes, Phys. Rev. B 53 (1996) 11108-11113.

DOI: 10.1103/physrevb.53.11108

Google Scholar

[36] M. Terrones, F. Banhart, N. Grobert, et al., Molecular Junctions by Joining Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 89 (2002) 75505.

DOI: 10.1103/physrevlett.89.075505

Google Scholar