Gravimetric and Statistical Analysis of Combined Protection Performance of Lavandula latifolia and Ricinus communis on Low Carbon Steel

Article Preview

Abstract:

The protection performance of admixed Lavandula latifolia and Ricinus communis (LLRC) oil distillates on low carbon steel in 0.5 M H2SO4 and HCl was performed by gravimetric measurement. Data output shows LLRC distillate effectively stifled the corrosion of the carbon steel with peak protection performance of 96.35% at 1% LLRC concentration in H2SO4 solution and 88.72% at 6% LLRC concentration in HCl solution. LLRC performed more effectively in H2SO4 solution than in HCl. The performance of LLRC in H2SO4 exhibited significant non dependence on observation time while LLRC concentration strongly influenced its performance. In HCl solution observation time and LLRC concentration influenced the performance output of LLRC distillate in different proportions. Statistical evaluation rated the influence of LLRC concentration the protection performance of LLRC at 90.66% compared to 2.22% for observation time, while the corresponding values in HCl are 55.37% for LLRC concentration and 21.04% for observation time. Calculated data for standard deviation shows relatively minimal variation from mean values with respect to LLRC concentration and observation time at lower LLRC concentration in H2SO4 solution. At higher LLRC concentration, the degree of variation increases due to relative instability with respect to exposure time. The standard deviation values in HCl are significantly and relatively higher than the values obtained in H2SO4 solution due to significant deviation from mean values which signifies extensive instability with respect to exposure time. The margin of error shows 91.7% and 93.3% of LLRC protection performance data in H2SO4 and HCl solution are greater than 80% inhibition efficiency at margin of error of +6.99% and +6.31%.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 329)

Pages:

43-51

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.K. Singh, S. Kumar, G. Udayabhanu, R.P. John, 4(N, N-dimethylamino) Benzaldehyde nicotinic hydrazone as corrosion inhibitor for mild steel in 1M HCl solution: An experimental and theoretical study, J. Mol. Liqs.216 (2016) 738 – 746.

DOI: 10.1016/j.molliq.2016.02.012

Google Scholar

[2] M.V. Fiori-Bimbi, P.E. Alvarez, H. Vaca, C.A. Gervasi, Corrosion Inhibition of mild steel in HCl solution by pectin, Corros. Sci. 92 (2015) 192 – 199.

DOI: 10.1016/j.corsci.2014.12.002

Google Scholar

[3] Yadav, M., Behera, D., & Sharma, U., (2016). Nontoxic Corrosion Inhibitors for N80 Steel in Hydrochloric Acid, Arabian J. Chem. 9(2) (2010) S1487 – S1495.

DOI: 10.1016/j.arabjc.2012.03.011

Google Scholar

[4] J. Zhao, N. Zhang, C. Qu, X. Wu, J. Zhang, X. Zhang, Cigarette butts and their application in corrosion inhibition for N80 steel at 90 °C in a hydrochloric acid solution. Industrial and Engineering Chemistry Research, 49, 3986 – 3991.

DOI: 10.1021/ie100168s

Google Scholar

[5] F.U. Renner, A. Stierl, H. Dosch, D.M. Kolb, T.L. Lee, J. Zegenhagen, Initial corrosion observed on the atomic scale. Nature, 439 (2006) 707 – 710.

DOI: 10.1038/nature04465

Google Scholar

[6] N.P. Branko, Chapter 14 - Corrosion Inhibitors, in Corrosion Engineering, Principles and Solved Problems, 2015, pp.581-597. https://doi.org/10.1016/B978-0-444-62722-3.00014-8.

Google Scholar

[7] P. Roy, P. Karfa, U. Adhikari, D. Sukul, Corrosion inhibition of mild steel in acidic medium by polyacrylamide grafted guar gum with various grafting percentage: Effect of intramolecular synergism, Corros. Sci. 88 (2014) 246 – 253.

DOI: 10.1016/j.corsci.2014.07.039

Google Scholar

[8] N.O. Obi-Egbedi, I.B. Obot, Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on mild steel corrosion in H2SO4, Corros. Sci. 53 (2011) 263 – 275.

DOI: 10.1016/j.corsci.2010.09.020

Google Scholar

[9] S.K. Shukla, M.A. Quraishi, The effects of pharmaceutically active compound doxycycline on the corrosion of mild steel in hydrochloric acid solution. Corros. Sci. 52 (2010) 314 – 321.

DOI: 10.1016/j.corsci.2009.09.017

Google Scholar

[10] G. Gece, Drugs: A review of promising novel corrosion inhibitors, Corros. Sci. 53 (2011) 3873 – 3898.

DOI: 10.1016/j.corsci.2011.08.006

Google Scholar

[11] M. Chevalier, F. Robert, N. Amusant, M. Traisnel, C. Roos, M. Lebrini, Enhanced corrosion resistance of mild steel in 1m hydrochloric acid solution by alkaloids extract from aniba rosaeodora plant: Electrochmical, phytochemical and xps studies, Electrochim. Acta, 131 (2014) 96 – 105.

DOI: 10.1016/j.electacta.2013.12.023

Google Scholar

[12] M.A.J. Mazumder, H.A. Al-Muallem, M. Faiz, S.A. Ali, Design and synthesis of a novel class of inhibitors for mild steel corrosion in acidic and carbon dioxide- saturated saline media, Corros. Sci. 87 (2014) 187 – 198.

DOI: 10.1016/j.corsci.2014.06.026

Google Scholar

[13] B.E. Brycki, I.H. Kowalczyk, A. Szulc, O. Kaczerewska, M. Pakiet, Organic Corrosion Inhibitors, IntechOpen, 2017. http://doi.org/10.5772/intechopen.72943.

DOI: 10.5772/intechopen.72943

Google Scholar

[14] Y. Li, P. Zhao, Q. Liang, B. Hou, Berberine as a natural source inhibitor for mild steel in 1 M H2SO4. Appl. Surf. Sci. 252 (2005) 1245-1253.

DOI: 10.1016/j.apsusc.2005.02.094

Google Scholar

[15] G. Quartarone, L. Ronchin, A. Vavasori, C. Tortato, L. Bonaldo, Inhibitive action of gramine towards corrosion of mild steel in deaerated 1.0 M hydrochloric acid solutions, Corros. Sci. 64 (2012) 82-89.

DOI: 10.1016/j.corsci.2012.07.008

Google Scholar

[16] H. Ashassi-Sorkhabi, M.R. Majidi, Seyyedi. Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution, Appl. Surf. Sci. 225 (2004) 176-185.

DOI: 10.1016/j.apsusc.2003.10.007

Google Scholar

[17] M. ÖZcan, AC impedance measurements of cysteine adsorption at mild steel/sulphuric acid interface as corrosion inhibitor, J Solid. State Electr. 12 (2008) 1653-1661.

DOI: 10.1007/s10008-008-0551-1

Google Scholar

[18] R.T. Loto, Anti-corrosion performance of the synergistic properties of benzenecarbonitrile and 5-bromovanillin on 1018 carbon steel in HCl environment, Sci. Reps. 7(1) (2017) 17555.

DOI: 10.1038/s41598-017-17867-0

Google Scholar

[19] R.T. Loto, O. Tobilola, O. Corrosion inhibition properties of the synergistic effect of 4-hydroxy-3-methoxybenzaldehyde and hexadecyltrimethylammoniumbromide on mild steel in dilute acid solutions, J. King Saud Univ. Eng. Sci. 30(4) (2018) 384-390.

DOI: 10.1016/j.jksues.2016.10.001

Google Scholar

[20] R.T. Loto, C.A. Loto, Effect of P-phenylediamine on the corrosion of austenitic stainless steel type 304 in hydrochloric acid, Int. J. Elect. Sci. 7(10) (2012) 9423-9440.

DOI: 10.1007/s12633-015-9344-1

Google Scholar

[21] R.T. Loto, E. Oghenerukewe, Inhibition studies of rosmarinus officinalis on the pitting corrosion resistance 439LL ferritic stainless steel in dilute sulphuric acid, Orient. J. Chem. 32(5) (2016) 2813-2832.

DOI: 10.13005/ojc/320557

Google Scholar

[22] A. Bouoidina, M. Chaouch, A. Abdellaoui, A. Lahkimi, B. Hammouti, F. El-Hajjaji, M. Taleb, A. Nahle, Essential oil of Foeniculum vulgare,: antioxidant and corrosion inhibitor on mild steel immersed in hydrochloric medium, Anti-Corros. Method M. 64(5), 563-572.

DOI: 10.1108/acmm-10-2016-1716

Google Scholar

[23] I. Hamdani, E. El Ouariachi, O. Mokhtari, A. Salhi, N. Chahboun, B. ElMahi, A. Bouyanzer, A. Zarrouk, B. Hammouti, J. Costa, Chemical constituents and corrosion inhibition of mild steel by the essential oil of Thymus algeriensis in 1.0 M hydrochloric acid solution, Der Pharm. Chem. 7(8) (2015) 252-264.

DOI: 10.1007/s11164-013-1246-5

Google Scholar

[24] Y. El Ouadi, A. Bouyanzer, L. Majidi, J. Paolini, J.M. Desjobert, J. Costa, A. Chetouani, B. Hammouti, Salvia officinalis essential oil and the extract as green corrosion inhibitor of mild steel in hydrochloric acid, J. Chem. Pharm. Res. 6(7) (2014) 1401-1416.

DOI: 10.1007/s11164-014-1802-7

Google Scholar

[25] C.A. Loto, R.T. Loto, A.P.I. Popoola, Effect of neem leaf (azadirachita indica) extract on the corrosion inhibition of mild steel in dilute acids, Int. J. Phy. Sci. 6(9) (2011) 2249-2257.

DOI: 10.17159/0379-4350/2015/v68a16

Google Scholar

[26] R.T. Loto, E. Oghenerukewe, Inhibition studies of Rosmarinus officinalis on the pitting corrosion resistance 439LL ferritic stainless steel in dilute sulphuric acid, Orient. J. Chem. 32(2) (2016) 2813-2832.

DOI: 10.13005/ojc/320557

Google Scholar

[27] K. Boumhara, M. Tabyaoui, C. Jama, F. Bentiss, Artemisia Mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1 M HCl solution: Electrochemical and XPS investigations, J. Ind. Eng. Chem. 29(2015) 146-155.

DOI: 10.1016/j.jiec.2015.03.028

Google Scholar

[28] N. Lahhit, A. Bouyanzer, J-M. Desjobert, B. Hammouti, R. Salghi, J. Costa, C. Jama, F. Bentiss, L. Majidi, Fennel (Foeniculum Vulgare) essential oil as green corrosion inhibitor of carbon steel in hydrochloric acid solution, Port. Electrochim. Acta, 29(2) (2011) 127-138.

DOI: 10.4152/pea.201102127

Google Scholar