Selective Etch for Micromachining Process in Manufacturing Hybrid Microdevices composed of Ni-Mn-Ga and Silicon Layers

Article Preview

Abstract:

The goal of this study is to make selective etch possible for the next generation of MEMS(microelectromechanical systems) devices that are composed Ni-Mn-Ga and silicon layers. Due tothe large magnetic-field-induced strains of Ni-Mn-Ga, sensing and actuating components can be fab-ricated in the Ni-Mn-Ga layers. Other functional components can be manufactured in the silicon layer.Single crystalline Ni-Mn-Ga alloys that are grown by using the Bridgman vertical growth techniquehave so far obtained the largest magnetic field-induced strain (MFIS), a magnetic shape memory(MSM) effect. Similar to silicon wafers, Ni-Mn-Ga wafers are also sliced from crystal-oriented singlecrystalline ingots. To fabricate hybrid MEMS devices such as micromanipulators and robots, lab-on-chip containing micropump manifolds and valves, or vibration energy harvesters, the fabricationprocesses used for MEMS devices will be also used to fabricate components in the Ni-Mn-Ga layer ofthe hybrid MEMS devices. One of the most important processes for MEMS fabrication is the structur-ing of materials by chemical etching. The main goal of this study is to obtain evidence that the etchantetches silicon but not Ni-Mn-Ga and to identify an etchant that etches Ni-Mn-Ga but not silicon. Thepresent paper reports on a novel experiment in dissolving Ni-Mn-Ga alloys. An etchant compositionof 69% HNO3, 98% H2SO4, and CuSO4•5H2O is proposed for dissolving Ni-Mn-Ga alloys and thevariation in the dissolution rate by adjusting the concentrations of HNO3 and ultrapure water (UPW)is demonstrated. This etchant was demonstrated to etch Ni-Mn-Ga but not silicon. The HF+HNO3acidic solution commonly used for etching silicon does not dissolve Ni-Mn-Ga alloys.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 344)

Pages:

81-88

Citation:

Online since:

June 2023

Authors:

Export:

Share:

Citation:

* - Corresponding Author

[1] K. Ullakko, J. Huang, C. Kantner, R. Handley, V. Kokorin, Large magnetic-field induced strain sin Ni2Mn Ga single crystals, Applied Physics Letters, (1996), 69, 1966-1968.

DOI: 10.1063/1.117637

Google Scholar

[2] P. Zheng, P. Lindquist, B. Yuan, P. Müllner, D. Dunand, Fabricating Ni-Mn-Ga microtubes by diffusion of Mn and Ga into Ni tubes, Intermetallics, (2014), 49, 70-80.

DOI: 10.1016/j.intermet.2014.01.014

Google Scholar

[3] R. Chulist, E. Pagounis, P. Czaja, N. Schell, H. Brokmeier, New Insights into the inter martensitic transformation and over 11 % magnetic-field-induced strain in 14 m Ni−Mn−Ga martensite, Advanced Engineering Materials, (2021), 23, 2100131(1-6).

DOI: 10.1002/adem.202100131

Google Scholar

[4] J. Pons, V. Chernenko, R. Santamarta, E. Cesari, Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys, Acta Materialia, (2000), 48, 3027-3038.

DOI: 10.1016/s1359-6454(00)00130-0

Google Scholar

[5] A. Likhachev, K. Ullakko, Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni-Mn-Ga shape memory alloy, Physics Letters A, (2000), 275, 142-151.

DOI: 10.1016/s0375-9601(00)00561-2

Google Scholar

[6] I., Kulagin, M. Li, L. Ville, H. Heikki, Review of MSM actuators: applications, challenges, and potential, IEEE Access, (2022), 10, 83841-83850.

DOI: 10.1109/access.2022.3197278

Google Scholar

[7] U.Gaitzsch, J. Drache, K. Mcdonald, P. Müllner, P. Lindquist, Obtaining of Ni-Mn-Ga magnetic shape memory alloy by annealing electrochemically deposited Ga / Mn / Ni layers, Thin Solid Films, (2012), 522, 171-174.

DOI: 10.1016/j.tsf.2012.08.019

Google Scholar

[8] H. Lei, L. Tong, Z. Wang, Effect of temperature on magnetic field – induced response of Ni-Mn-Ga single crystals, Journal of Intelligent Material Systems and Structures, (2015), 26, 2395-2410.

DOI: 10.1177/1045389x14556164

Google Scholar

[9] P. Polyakov, V. Slyusarev, V. Kokorin, S. Konoplyuk, Y. Semenova, V. Khovaylo, Volume change during intermartensitic transformations in Ni-Mn-Ga alloy, Journal of Materials Engineering and Performance, (2014), 23, 3180-3183.

DOI: 10.1007/s11665-014-1095-4

Google Scholar

[10] D. Dunand, P. Müllner, Size effects on magnetic actuation in Ni-Mn-Ga shape memory alloys, Advanced Materials, (2011), 23, 216-232.

DOI: 10.1002/adma.201002753

Google Scholar

[11] B. Özkale, F. Mushtaq, J. Fornell, G. Chatzipirpiridis, L. Martin, J. Sort, C. Müller, E. Pellicer, B. Nelson, S. Pané, Single step electrosynthesis of NiMnGa alloys, Electrochimica Acta, (2016), 204, 199-205.

DOI: 10.1016/j.electacta.2016.04.071

Google Scholar

[12] K. Javed, X. Zhang, S. Parajuli, S.Ali, N.Ahmad, S.Shah, M. Irfan, J.Feng, Magnetization behavior of NiMnGa alloy nanowires prepared by DC electrodeposition, Journal of Magnetism and Magnetic Materials, (2020), 498, 166232.

DOI: 10.1016/j.jmmm.2019.166232

Google Scholar

[13] Y. Zhang, F. Qin, D. Estevez, V. Franco, H. Peng, Structure, magnetic and magnetocaloric properties of Ni2MnGa Heusler alloy nanowires, Journal of Magnetism and Magnetic Materials, (2020), 513, 167100.

DOI: 10.1016/j.jmmm.2020.167100

Google Scholar

[14] S. Hutagalung, M. Fadhali, R. Areshi, F. Tan, Optical and electrical characteristics of silicon nanowires prepared by electroless etching, Nanoscale Research Letters, (2017), 12, 425-436.

DOI: 10.1186/s11671-017-2197-3

Google Scholar

[15] V. Laitinen, A. Saren, A. Sozinov, K. Ullakko, Giant 5.8 % magnetic-field-induced strain in additive manufactured Ni-Mn- Ga magnetic shape memory alloy, Scripta Materialia, (2022), 208, 114324 (2022).

DOI: 10.1016/j.scriptamat.2021.114324

Google Scholar

[16] A. Mostafaei, K. Kimes, E. Stevens, J. Toman, Y. Krimer, K. Ullakko, M. Chmielus, Microstructural evolution and magnetic properties of binder jet additive manufactured Ni-Mn-Ga magnetic shape memory alloy foam, Acta Materialia, (2017), 131, 482-490.

DOI: 10.1016/j.actamat.2017.04.010

Google Scholar

[17] A. Smith, J. Tellinen, K. Ullakko, Rapid actuation and response of Ni-Mn-Ga to magnetic-field-induced stress, Acta Materialia, (2014), 80, 373-379.

DOI: 10.1016/j.actamat.2014.06.054

Google Scholar

[18] K. Ullakko, Magnetically controlled shape memory alloys: a new class of actuator materials, Journal of Materials Engineering and Performance, (1996), 5, 405-409.

DOI: 10.1007/bf02649344

Google Scholar

[19] K.Ullakko, L. Wendell, A. Smith, P. Müllner, G. Hampikian, A magnetic shape memory micropump: contact-free, and compatible with PCR and human DNA profiling, Smart Materials and Structures, (2012), 21, 115020 (1-10).

DOI: 10.1088/0964-1726/21/11/115020

Google Scholar

[20] A. Saren, D. Musiienko, A. Smith, J. Tellinen, K. Ullakko, Modeling and design of a vibration energy harvester using the magnetic shape memory effect, Smart Materials andStructures, (2015), 24, 95002.

DOI: 10.1088/0964-1726/24/9/095002

Google Scholar

[21] V. Lindroos, M. Tilli, A. Lehto, T. Motooka, Handbook of Silicon Based MEMS Materials and Technologies, William Andrew, (2010), 636 .

Google Scholar

[22] H. Qu, CMOS MEMS fabrication technologies and devices, Micromachines, (2016), 7, 1-21.

Google Scholar

[23] R.A. Moghadam, H. Saffari, J. Koohsorkhi, Ni–P electroless on nonconductive substrates as metal deposition process for MEMS fabrication, Microsystem Technologies, (2021), 27, 79-86.

DOI: 10.1007/s00542-020-04912-8

Google Scholar

[24] R. Anthony, N. Wang, D. Casey, C. Mathúna, J. Rohan, MEMS based fabrication of high-frequency integrated inductors on Ni-Cu-Zn ferrite substrates, Journal of Magnetism and Magnetic Materials, (2016), 406, 89-94.

DOI: 10.1016/j.jmmm.2015.12.099

Google Scholar

[25] A. Algamili, M. Khir, J. Dennis, A. Ahmed, S, Alabsi, S.B. Hashwan, M. Junaid, A review of actuation and sensing mechanisms in MEMS-based sensor devices, Nanoscale Research Letters, (2021), 16, 1-21.

DOI: 10.1186/s11671-021-03481-7

Google Scholar

[26] X.Zhang, M. Qian, Magnetic shape memory alloys - preparation, martensitic transformation and properties, Harbin Institute of Technology Press, (2022), 1200.

Google Scholar

[27] K. Williams, R. Muller, Etch rates for micromachining processing, Journal of Microelectromechanical Systems, (1996), 5, 256-269.

DOI: 10.1109/84.546406

Google Scholar

[28] K. Williams, K. Gupta, M. Wasilik, Etch rates for micromachining processing - Part II, Journal of Microelectromechanical Systems, (2003), 12, 761-778.

DOI: 10.1109/jmems.2003.820936

Google Scholar

[29] B. Wu, A. Kumar, S. Pamarthy, High aspect ratio silicon etch: a review. Journal of Applied Physics, (2010), 108, 051101.

DOI: 10.1063/1.3474652

Google Scholar

[30] K. Ullakko, Operation element comprising magnetic shape memory alloy and a method for manufacture it. U.S. Patent PCT/FI2019/050613, PAT 1388 WO.

Google Scholar