PVA Nanofibers Embedded with Different Concentration of ZnO Prepared by Electrospinning Method

Article Preview

Abstract:

Polyvinyl alcohol (PVA) nanofibers were fabricated using the electrospinning method. The nanofibers were embedded with zinc oxide (ZnO) particles by mixing PVA liquid with the ZnO powders during the solution preparation stage. The FESEM images showed an increase in the amount of ZnO particles embedded in the PVA nanofibers as the powder content was increased. Other than that, there are no significant changes in other physical properties of the nanofibers caused by the increasing number of ZnO particle content. This means that ZnO nanopowders (with concentration in the range of 1.63 wt% - 8.14 wt%) can be effectively integrated and embedded into PVA nanofibers without negative consequences on the fibers formation and structure. This will facilitate the fabrication of ZnO embedded PVA nanofibers in some applications that may require it such as drug delivery, filtration, and biomedical application.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 344)

Pages:

61-66

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Taylor, Disintegration of water drops in an electric field, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 280 (1964) 383-397.

DOI: 10.1098/rspa.1964.0151

Google Scholar

[2] P. Mehta, H-A. Ria, M. Rasekh, M.S. Arshad, A. Smith, S.M.V.D. Merwe, X. Li, M. W. Chang, Z. Ahmad, Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies, Drug Discovery Today. 22 (2017) 157-165.

DOI: 10.1016/j.drudis.2016.09.021

Google Scholar

[3] J. Xue, T. Wu, Y. Xia, Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications, Chem. Rev. 119 (2019) 5298-5415.

DOI: 10.1021/acs.chemrev.8b00593

Google Scholar

[4] A. Haider, S. Haider, I Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, Arabian Journal of Chemistry. 11 (2018) 1165-1188.

DOI: 10.1016/j.arabjc.2015.11.015

Google Scholar

[5] D. Han, A. Steckl, Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications, Chem. Europe. 84 (2019) 1453-497.

DOI: 10.1002/cplu.201900281

Google Scholar

[6] Y. Zhang, T. R. Nayak, H. Hong, W. Cai, Biomedical applications of zinc oxide nanomaterials. Current Molecular Medicine. 13 (2013) 1633-1645.

DOI: 10.2174/1566524013666131111130058

Google Scholar

[7] E. Ferrone, R. Araneo, A. Notargiacomo, M. Pea, A. Rinaldi, ZnO Nanostructures and Electrospun ZnO – Polymeric Hybrid Nanomaterials in Biomedical, Health, and Sustainability Applications, Nanomaterials. 9 (2019) 1449.

DOI: 10.3390/nano9101449

Google Scholar

[8] A. Luraghi, F. Peri, L. Moroni, Electrospinning for drug delivery applications: A review, Journal of Controlled Release. 334 (2021) 463-484.

DOI: 10.1016/j.jconrel.2021.03.033

Google Scholar

[9] Y. Bagbi, A. Pandey, P.R. Solanki, Chapter 10 - Electrospun Nanofibrous Filtration Membranes for Heavy Metals and Dye Removal, Nanoscale Materials in Water Purification. (2019) 275-288.

DOI: 10.1016/b978-0-12-813926-4.00015-x

Google Scholar

[10] M.L. A. Anero, A. D. S. Montallana, M. R. Vasquez Jr, Fabrication of electrospun poly(vinyl alcohol) nanofibers loaded with zinc oxide particles, Results in Physics. 25 (2021) 104223.

DOI: 10.1016/j.rinp.2021.104223

Google Scholar

[11] R.M. Nezarati, E. Cosgriff-Hernandez, Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology, Tissue Eng Part C Methods. 19 (2013) 810-819.

DOI: 10.1089/ten.tec.2012.0671

Google Scholar

[12] M. Song, K. Kartawira, K. D. Hillaire, C. Li, C.B. Eaker, A. Kiani, K. E. Daniels, Overcoming Rayleigh–Plateau instabilities: Stabilizing and destabilizing liquid-metal streams via electrochemical oxidation, Proceedings of the National Academy of Sciences of the United States of America. 117 (2020) 19026-19032.

DOI: 10.1073/pnas.2006122117

Google Scholar

[13] H. Fong, I. Chun, D.H. Reneker, Beaded nanofibers formed during electrospinning, Polymer. 40 (1999) 4585-4592.

DOI: 10.1016/s0032-3861(99)00068-3

Google Scholar

[14] Y.M. Shin, M.M. Hohman, M.P. Brenner, G.C. Rutledge, Experimental characterization of electrospinning: the electrically forced jet and instabilities, Polymer. 42 (2001) 9955-9967.

DOI: 10.1016/s0032-3861(01)00540-7

Google Scholar

[15] A.L. Yarin, S. Koombhongse, D. H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, Journal of Applied Physics. 90 (2001) 4836.

DOI: 10.1063/1.1408260

Google Scholar

[16] S. Zargham, S. Bazgir, A. Tavakoli, A.S. Rashidi, R. Damerchely, The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber, Journal of Engineered Fibers and Fabrics. 7 (2021) 42-49.

DOI: 10.1177/155892501200700414

Google Scholar

[17] A.S. Motamedi, M. Hamid, F. Hajiesmaeilbaigi, Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds, Progress in Biomaterials. 6 (2017) 113-123.

DOI: 10.1007/s40204-017-0071-0

Google Scholar