Development of High Quality 8 Inch 4H-SiC Substrates

Article Preview

Abstract:

8 inch 4H-silicon carbide (SiC) development faces challenges first from obtaining high-quality 8 inch SiC seed substrate, then reducing grown-in crystal residual stress and defects in the following crystal growth process. Here we report the diameter expansion process from 6 inch 4H-SiC seed substrate to 8 inch 4H-SiC crystal. Based on simulation and experimental results, it is deduced that an optimized radial temperature gradient (RTG) zone in the range of 0.10-0.12 °C/mm is essential for high-quality and efficient SiC crystal diameter expansion. According to the RTG calculation, diameter expansion process is designed and 8 inch 4H-SiC crystal as well as seed substrate is achieved. With the obtained seed substrate, high-quality 8 inch 4H-SiC crystal is developed and the following polished 4H-SiC substrate quality is characterized.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] B. Gao, T. Kakimoto, Three-Dimensional Modeling of Basal Plane Dislocations in 4H-SiC Single Crystals Grown by the Physical Vapor Transport Method, Cryst. Growth Des.14 (2014) 1272.

DOI: 10.1021/cg401789g

Google Scholar

[2] J. Steiner, M. Roder, B. Duong Nguyen, S. Sandfeld, A. Danilewsky, P. J. Wellmann, Analysis of the Basal Plane Dislocation Density and Thermomechanical Stress during 100 mm PVT Growth of 4H-SiC, Materials, 12 (2019), 2207.

DOI: 10.3390/ma12132207

Google Scholar

[3] J. Guo, Y. Yang, B. Raghothamachar, J. Kim, M. Dudley, G. Chung, E. Sanchez, J. Quast, I. Manning, Prismatic Slip in PVT-Grown 4H-SiC Crystals, J. Electron. Mater., 46 (2017) 2040-2044.

DOI: 10.1007/s11664-016-5118-9

Google Scholar

[4] A.R. Powell, J.J. Sumakeris, Y. Khlebnikov, M.J. Paisley, R.T. Leonard, E. Deyneka, S. Gangwal, J. Ambati, V. Tsevtkov, J. Seaman, A. McClure, C. Horton, O. Kramarenko, V. Sakhalkar, M. O'Loughlin, A. A. Burk, J.Q. Guo, M. Dudley, E. Balkas, Bulk Growth of Large Area SiC Crystals, Materials Science Forum, 858 (2016) 5-10.

DOI: 10.4028/www.scientific.net/msf.858.5

Google Scholar

[5] M. Sonoda, T. Nakano, K. Shioura, N. Shinagawa, N. Ohtani, Structural Characterization of the Growth Front of Physical Vapor Transport Grown 4H-SiC Crystals Using X-ray Topography, J. Cryst. Growth 499 (2018) 24-29.

DOI: 10.1016/j.jcrysgro.2018.07.029

Google Scholar

[6] K. Shioura, N. Shinagawa, T. Izawa, N. Ohtani, Structural Characterization of the Grown Crystal/Seed Interface of Physical Vapor Transport Grown 4H-SiC Crystals Using Raman Microscopy and X-ray Topography, J. Cryst. Growth, 515 (2019) 58.

DOI: 10.1016/j.jcrysgro.2019.03.015

Google Scholar

[7] S. Nishizawa, F. Mercierb, Effect of Nitrogen and Aluminium on Silicon Carbide Polytype Stability, J. Cryst. Growth, 518, 15 (2019) 99-102.

DOI: 10.1016/j.jcrysgro.2019.04.018

Google Scholar

[8] Maher S. Amer, L. Durgam, Mostafa M. El-Ashry, Raman Mapping of Local Phases and Local Stress Fields in Silicon–Silicon Carbide Composites, Materials Chemistry and Physics 98 (2006) 410–414.

DOI: 10.1016/j.matchemphys.2005.09.066

Google Scholar

[9] N. Sugiyama, M. Yamada, Y. Urakami, M. Kobayashi, T. Masuda, K. Nishikawa, F. Hirose, S. Onda, Correlation of Stress in Silicon Carbide Crystal and Frequency Shift in Micro-Raman Spectroscopy, MRS Proceedings, 1693 (2014), Mrss14-1693-dd01-07.

DOI: 10.1557/opl.2014.580

Google Scholar