Mass Production and Vast Application States of Bulk Metallic Glasses

Article Preview

Abstract:

Since the first synthesis of bulk metallic glasses (BMGs) by copper mold casting in 1990, much effort has been devoted to the searching of new BMG composition, the clarification of fundamental and engineering properties for BMGs and their industrialization. At present, BMGs have been formed in a large number of multicomponent alloy systems where the empirical three component rule is satisfied. Nowadays, commercialized BMGs are classified to Zr-based and Fe-based alloy groups. When we look at the industrialization of Zr-Al-Ni-Cu-based BMGs, the first commercialization was made for golf clubs in Japan in 1998, followed by watch parts etc. Since then, Zr-based BMGs have been used continuously up to 2013, though their application scale was in a limited state. Since 2014, the application scale was significantly extended in collaboration with the rapid developments of smartphones and electric vehicles. At present, the mass production facilities for Zr-based BMGs have been significantly developed and variety of BMG products have been produced. On the other hand, Fe-based soft magnetic BMGs were found in 1995. Their BMGs have also been used on a huge number of pieces in various kinds of electronic-magnetic instruments. These recent application states for Zr- and Fe-based BMGs are introduced together with new nanocrystalline Fe-based soft magnetic alloys developed through the derivation of alloy composition from Fe-based BMGs.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 353)

Pages:

97-102

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Inoue, T. Zhang, T. Masumoto, Mater. Trans., JIM, 31 (1990) 425-428.

Google Scholar

[2] A. Inoue, Acta Mater., 48 (2000) 279-306.

Google Scholar

[3] A. Inoue, A. Takeuchi, Acta Mater., 59 (2011) 2243-2267.

Google Scholar

[4] L. Ma, L. Wang, T. Zhang, A. Inoue, Mater. Trans., 43 (2002) 277-280.

Google Scholar

[5] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mat. Sci. Eng. A-Struct., 375–377 (2004) 213-218.

Google Scholar

[6] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater., 6 (2004) 299-303.

Google Scholar

[7] C. Suryanarayana, A. Inoue, Bulk Metallic Glasses, 2nd Edition, CRC Press 2017.

Google Scholar

[8] Information on https://www.bmg-yihao.com/bulk-metallic-glass/.

Google Scholar

[9] H. Koshiba, Y. Naito, T. Mizushima, A. Inoue, Materia Japan, 47 (2008) 39-41.

Google Scholar

[10] Information on https://www.tokin.com/products/.

Google Scholar

[11] A.Inoue, Y.Kawamura, M. Matsushita, K. Hayashi, J. Koike, J. Mater. Res., 16(2001)1894-1900.

Google Scholar

[12] A. Inoue, F.L. Kong, S.L. Zhu, F. Al-Marzouki, J. Alloys Compd., 707 (2017) 12-19.

Google Scholar

[13] H.S. Chen, Acta Metall., 22 (1974) 1505-1511.

Google Scholar

[14] T. Zhang, A. Inoue, T. Masumoto, Mater. Trans., JIM, 32 (1991) 1005-1010.

Google Scholar

[15] Y. Yoshihiko, M. Enrico, I. Akihisa, S. Ludwig, Journal of Physics: Conference Series, 144 (2009) 012043.

Google Scholar

[16] T. Zhang, A. Inoue, T. Masumoto, Mat. Sci. Eng. A-Struct., 181-182 (1994) 1423-1426.

Google Scholar

[17] A. Peker, W.L. Johnson, Appl. Phys. Lett., 63 (1993) 2342-2344.

Google Scholar

[18] A. Inoue, N. Nishiyama, H. Kimura, Mater. Trans., JIM, 38 (1997) 179-183.

Google Scholar

[19] N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Zeng, A. Inoue, Intermetallics, 30 (2012) 19-24.

DOI: 10.1016/j.intermet.2012.03.020

Google Scholar

[20] A. Inoue, J.S. Gook, Mater. Trans., JIM, 36 (1995) 1180-1183.

Google Scholar

[21] A. Inoue, Y. Shinohara, J.S. Gook, Mater. Trans., JIM, 36 (1995) 1427-1433.

Google Scholar

[22] T. Mizushima, H. Koshiba, Y. Naito, A. Inoue, J. Jpn. Soc. Powder Powder Metall., 55 (2008) 146-148.

Google Scholar

[23] H. Matsumoto, A. Urata, Y. Yamada, A. Inoue, J. Alloys Compd., 509, S1 (2011) S193-S196.

Google Scholar

[24] A. Inoue, K. Ohtera, K. Kita, T. Masumoto, Jpn. J. Appl. Phys., 27 (1988) L2248-L2251.

Google Scholar

[25] S.G. Kim, A. Inoue, T. Masumoto, Mater Trans, JIM, 31 (1990) 929-934.

Google Scholar

[26] A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, Mater. Trans., JIM, 33 (1992) 937-945.

Google Scholar

[27] K. Amiya, T. Ohsuna, A. Inoue, Mater. Trans., 44 (2003) 2151-2156.

Google Scholar

[28] E.S. Park, D.H. Kim, J. Mater. Res., 20 (2005) 1465-1469.

Google Scholar

[29] Y.-K. Xu, H. Ma, J. Xu, E. Ma, Acta Mater., 53 (2005) 1857-1866.

Google Scholar

[30] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials, 27 (2006) 1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[31] S.J.B. Bin, K.S. Fong, B.W. Chua, M. Gupta, J Magnesium Alloys, 10 (2022) 899-914.

Google Scholar

[32] Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Mater. Trans., 42 (2001) 1172-1176.

Google Scholar

[33] A. Inoue, B.L. Shen, Mat. Sci. Eng. A-Struct., 375-77 (2004) 302-306.

Google Scholar

[34] B. Shen, M. Akiba, A. Inoue, Appl. Phys. Lett., 88 (2006) 131907.

Google Scholar

[35] M. Ohta, Y. Yoshizawa, Appl. Phys. Lett., 91 (2007) 062517.

Google Scholar

[36] A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, Mater. Trans., 50 (2009) 204-209.

Google Scholar

[37] F. Kong, A. Wang, X. Fan, H. Men, B. Shen, G. Xie, A. Makino, A. Inoue, J. Appl. Phys., 109 (2011) 07A303.

Google Scholar

[38] K. Yoshidome, A. Hasegawa, Y. Kajiura, M. Hosono, S. Mori, H. Matsumoto, J. Jpn. Soc. Powder Powder Metall., 69 (2022) 392-397.

DOI: 10.2497/jjspm.69.392

Google Scholar

[39] Information on http://en.nbbplus.com/product/7.

Google Scholar