[1]
M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn, Acta Materialia 52(17) (2004) 5093-5103.
DOI: 10.1016/j.actamat.2004.07.015
Google Scholar
[2]
R.B. Figueiredo, F.S.J. Poggiali, C.L.P. Silva, P.R. Cetlin, T.G. Langdon, The influence of grain size and strain rate on the mechanical behavior of pure magnesium, Journal of Materials Science 51(6) (2016) 3013-3024.
DOI: 10.1007/s10853-015-9612-x
Google Scholar
[3]
A.P. Carvalho, R.B. Figueiredo, An Overview of the Effect of Grain Size on Mechanical Properties of Magnesium and Its Alloys, Materials Transactions advpub (2023).
Google Scholar
[4]
R.B. Figueiredo, M. Kawasaki, T.G. Langdon, Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress, Progress in Materials Science 137 (2023) 101131.
DOI: 10.1016/j.pmatsci.2023.101131
Google Scholar
[5]
H. Somekawa, T. Mukai, Hall–Petch breakdown in fine-grained pure magnesium at low strain rates, Metallurgical and Materials Transactions A 46(2) (2015) 894-902.
DOI: 10.1007/s11661-014-2641-2
Google Scholar
[6]
M.M. Castro, P.H.R. Pereira, A. Isaac, T.G. Langdon, R.B. Figueiredo, Inverse Hall–Petch behaviour in an AZ91 alloy and in an AZ91–Al2O3 composite consolidated by high-pressure torsion, Advanced Engineering Materials 22 (2020) 1900894.
DOI: 10.1002/adem.201900894
Google Scholar
[7]
A.P. Carvalho, R.B. Figueiredo, The Effect of Ultragrain Refinement on the Strength and Strain Rate Sensitivity of a ZK60 Magnesium Alloy, Advanced Engineering Materials 24(3) (2022) 2100846.
DOI: 10.1002/adem.202100846
Google Scholar
[8]
A.P. Carvalho, R.B. Figueiredo, The contribution of grain boundary sliding to the deformation in an ultrafine-grained Mg–Al–Zn alloy, Journal of Materials Science (2023).
DOI: 10.1007/s10853-023-08489-1
Google Scholar
[9]
H. Yu, Y. Xin, M. Wang, Q. Liu, Hall-Petch relationship in Mg alloys: A review, Journal of Materials Science & Technology 34(2) (2018) 248-256.
DOI: 10.1016/j.jmst.2017.07.022
Google Scholar
[10]
R.B. Figueiredo, T.G. Langdon, Processing Magnesium and Its Alloys by High-Pressure Torsion: An Overview, Advanced Engineering Materials 21(1) (2019) 1801039.
DOI: 10.1002/adem.201801039
Google Scholar
[11]
R. Zheng, J.-P. Du, S. Gao, H. Somekawa, S. Ogata, N. Tsuji, Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer, Acta Materialia 198 (2020) 35-46.
DOI: 10.1016/j.actamat.2020.07.055
Google Scholar
[12]
R.B. Figueiredo, T.G. Langdon, Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall-Petch relationship and strain rate sensitivity, Journal of Materials Research and Technology 14 (2021) 137-159.
DOI: 10.1016/j.jmrt.2021.06.016
Google Scholar
[13]
R.B. Figueiredo, T.G. Langdon, Effect of grain size on strength and strain rate sensitivity in metals, Journal of Materials Science 57 (2022) 5210-5229.
DOI: 10.1007/s10853-022-06919-0
Google Scholar
[14]
R.B. Figueiredo, K. Edalati, T.G. Langdon, Effect of creep parameters on the steady-state flow stress of pure metals processed by high-pressure torsion, Materials Science & Engineering A 835 (2022) 142666.
DOI: 10.1016/j.msea.2022.142666
Google Scholar
[15]
R.B. Figueiredo, W. Wolf, T.G. Langdon, Effect of grain size on strength and strain rate sensitivity in the CrMnFeCoNi high-entropy alloy, Journal of Materials Research and Technology 20 (2022) 2358.
DOI: 10.1016/j.jmrt.2022.07.181
Google Scholar
[16]
K. Xia, J.T. Wang, X. Wu, G. Chen, M. Gurvan, Equal channel angular pressing of magnesium alloy AZ31, Materials Science and Engineering A 410-411 (2005) 324-327.
DOI: 10.1016/j.msea.2005.08.123
Google Scholar
[17]
J.A. del Valle, F. Carreño, O.A. Ruano, Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling, Acta Materialia 54(16) (2006) 4247-4259.
DOI: 10.1016/j.actamat.2006.05.018
Google Scholar
[18]
M.Y. Zhan, Y.Y. Li, W.P. Chen, W.D. Chen, Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by accumulative roll-bonding, Journal of Materials Science 42(22) (2007) 9256-9261.
DOI: 10.1007/s10853-007-1885-2
Google Scholar
[19]
W. Yuan, R.S. Mishra, B. Carlson, R.K. Mishra, R. Verma, R. Kubic, Effect of texture on the mechanical behavior of ultrafine grained magnesium alloy, Scripta Materialia 64(6) (2011) 580-583.
DOI: 10.1016/j.scriptamat.2010.11.052
Google Scholar
[20]
S.M. Razavi, D.C. Foley, I. Karaman, K.T. Hartwig, O. Duygulu, L.J. Kecskes, S.N. Mathaudhu, V.H. Hammond, Effect of grain size on prismatic slip in Mg–3Al–1Zn alloy, Scripta Materialia 67(5) (2012) 439-442.
DOI: 10.1016/j.scriptamat.2012.05.017
Google Scholar
[21]
J. Straska, M. Janecek, J. Gubicza, T. Krajnak, E.Y. Yoon, H.S. Kim, Evolution of microstructure and hardness in AZ31 alloy processed by high pressure torsion, Materials Science and Engineering: A 625 (2015) 98-106.
DOI: 10.1016/j.msea.2014.12.005
Google Scholar
[22]
J. Xu, X.W. Wang, M. Shirooyeh, G.N. Xing, D.B. Shan, B. Guo, T.G. Langdon, Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy processed by high-pressure torsion, Journal of Materials Science 50(22) (2015) 7424-7436.
DOI: 10.1007/s10853-015-9300-x
Google Scholar
[23]
D. Guan, W.M. Rainforth, J. Sharp, J. Gao, I. Todd, On the use of cryomilling and spark plasma sintering to achieve high strength in a magnesium alloy, Journal of Alloys and Compounds 688 (2016) 1141-1150.
DOI: 10.1016/j.jallcom.2016.07.162
Google Scholar
[24]
H. Zhou, L. Hu, Y. Sun, H. Zhang, C. Duan, H. Yu, Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling, Materials Characterization 113 (2016) 108-116.
DOI: 10.1016/j.matchar.2016.01.014
Google Scholar
[25]
C.L.P. Silva, R.B. Soares, P.H.R. Pereira, R.B. Figueiredo, V.F.C. Lins, T.G. Langdon, The Effect of High-Pressure Torsion on Microstructure, Hardness and Corrosion Behavior for Pure Magnesium and Different Magnesium Alloys, Advanced Engineering Materials 21(3) (2019) 1801081.
DOI: 10.1002/adem.201801081
Google Scholar
[26]
H.K. Lin, J.C. Huang, High Strain Rate and/or Low Temperature Superplasticity in AZ31 Mg Alloys Processed by Simple High-Ratio Extrusion Methods, Materials Transactions 43(10) (2002) 2424-2432.
DOI: 10.2320/matertrans.43.2424
Google Scholar
[27]
R.B. Figueiredo, S. Sabbaghianrad, A. Giwa, J.R. Greer, T.G. Langdon, Evidence for exceptional low temperature ductility in polycrystalline magnesium processed by severe plastic deformation, Acta Materialia 122 (2017) 322-331.
DOI: 10.1016/j.actamat.2016.09.054
Google Scholar
[28]
M.M. Castro, D.R. Lopes, R.B. Soares, D.M.M. dos Santos, E.H.M. Nunes, V.F.C. Lins, P.H.R. Pereira, A. Isaac, T.G. Langdon, R.B. Figueiredo, Magnesium-Based Bioactive Composites Processed at Room Temperature, Materials 12(16) (2019) 2609.
DOI: 10.3390/ma12162609
Google Scholar
[29]
D. Lopes, R.B. Soares, M.M. Castro, R.B. Figueiredo, T.G. Langdon, V.F.C. Lins, Corrosion Behavior in Hank's Solution of a Magnesium–Hydroxyapatite Composite Processed by High-Pressure Torsion, Advanced Engineering Materials 22 (2020) 2000765.
DOI: 10.1002/adem.202000765
Google Scholar
[30]
M.M. Castro, W. Wolf, A. Isaac, M. Kawasaki, R.B. Figueiredo, Consolidation of magnesium and magnesium-quasicrystal composites through high‑pressure torsion, Letters on Materials 9(4s) (2019) 546-550.
DOI: 10.22226/2410-3535-2019-4-546-550
Google Scholar
[31]
J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Grain boundary stability governs hardening and softening in extremely fine nanograined metals, Science 355(6331) (2017) 1292-1296.
DOI: 10.1126/science.aal5166
Google Scholar