Breaks in Hall-Petch Relationship in Magnesium

Article Preview

Abstract:

Magnesium and its alloys display a non-usual relationship between flow stress and grain size at room temperature. Breaks in the Hall-Petch relationship have been reported in the literature. Inverse Hall-Petch behavior in which flow stress reduces with grain size decreasing has also been reported in pure magnesium and magnesium alloys with ultrafine and nanocrystalline structures. The present overview discusses these effects in terms of controlling deformation mechanisms. The distinct strength observed in pure magnesium and magnesium alloys with ultrafine grained structure is also discussed. It is shown that experimental data for fine and ultrafine grained magnesium alloys agree with a model suggested recently based on the mechanism of grain boundary sliding. It is also exhibited that the stability of the grain structure might control the strength of ultrafine grained samples.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 353)

Pages:

121-127

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn, Acta Materialia 52(17) (2004) 5093-5103.

DOI: 10.1016/j.actamat.2004.07.015

Google Scholar

[2] R.B. Figueiredo, F.S.J. Poggiali, C.L.P. Silva, P.R. Cetlin, T.G. Langdon, The influence of grain size and strain rate on the mechanical behavior of pure magnesium, Journal of Materials Science 51(6) (2016) 3013-3024.

DOI: 10.1007/s10853-015-9612-x

Google Scholar

[3] A.P. Carvalho, R.B. Figueiredo, An Overview of the Effect of Grain Size on Mechanical Properties of Magnesium and Its Alloys, Materials Transactions advpub (2023).

Google Scholar

[4] R.B. Figueiredo, M. Kawasaki, T.G. Langdon, Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress, Progress in Materials Science 137 (2023) 101131.

DOI: 10.1016/j.pmatsci.2023.101131

Google Scholar

[5] H. Somekawa, T. Mukai, Hall–Petch breakdown in fine-grained pure magnesium at low strain rates, Metallurgical and Materials Transactions A 46(2) (2015) 894-902.

DOI: 10.1007/s11661-014-2641-2

Google Scholar

[6] M.M. Castro, P.H.R. Pereira, A. Isaac, T.G. Langdon, R.B. Figueiredo, Inverse Hall–Petch behaviour in an AZ91 alloy and in an AZ91–Al2O3 composite consolidated by high-pressure torsion, Advanced Engineering Materials 22 (2020) 1900894.

DOI: 10.1002/adem.201900894

Google Scholar

[7] A.P. Carvalho, R.B. Figueiredo, The Effect of Ultragrain Refinement on the Strength and Strain Rate Sensitivity of a ZK60 Magnesium Alloy, Advanced Engineering Materials 24(3) (2022) 2100846.

DOI: 10.1002/adem.202100846

Google Scholar

[8] A.P. Carvalho, R.B. Figueiredo, The contribution of grain boundary sliding to the deformation in an ultrafine-grained Mg–Al–Zn alloy, Journal of Materials Science (2023).

DOI: 10.1007/s10853-023-08489-1

Google Scholar

[9] H. Yu, Y. Xin, M. Wang, Q. Liu, Hall-Petch relationship in Mg alloys: A review, Journal of Materials Science & Technology 34(2) (2018) 248-256.

DOI: 10.1016/j.jmst.2017.07.022

Google Scholar

[10] R.B. Figueiredo, T.G. Langdon, Processing Magnesium and Its Alloys by High-Pressure Torsion: An Overview, Advanced Engineering Materials 21(1) (2019) 1801039.

DOI: 10.1002/adem.201801039

Google Scholar

[11] R. Zheng, J.-P. Du, S. Gao, H. Somekawa, S. Ogata, N. Tsuji, Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer, Acta Materialia 198 (2020) 35-46.

DOI: 10.1016/j.actamat.2020.07.055

Google Scholar

[12] R.B. Figueiredo, T.G. Langdon, Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall-Petch relationship and strain rate sensitivity, Journal of Materials Research and Technology 14 (2021) 137-159.

DOI: 10.1016/j.jmrt.2021.06.016

Google Scholar

[13] R.B. Figueiredo, T.G. Langdon, Effect of grain size on strength and strain rate sensitivity in metals, Journal of Materials Science 57 (2022) 5210-5229.

DOI: 10.1007/s10853-022-06919-0

Google Scholar

[14] R.B. Figueiredo, K. Edalati, T.G. Langdon, Effect of creep parameters on the steady-state flow stress of pure metals processed by high-pressure torsion, Materials Science & Engineering A 835 (2022) 142666.

DOI: 10.1016/j.msea.2022.142666

Google Scholar

[15] R.B. Figueiredo, W. Wolf, T.G. Langdon, Effect of grain size on strength and strain rate sensitivity in the CrMnFeCoNi high-entropy alloy, Journal of Materials Research and Technology 20 (2022) 2358.

DOI: 10.1016/j.jmrt.2022.07.181

Google Scholar

[16] K. Xia, J.T. Wang, X. Wu, G. Chen, M. Gurvan, Equal channel angular pressing of magnesium alloy AZ31, Materials Science and Engineering A 410-411 (2005) 324-327.

DOI: 10.1016/j.msea.2005.08.123

Google Scholar

[17] J.A. del Valle, F. Carreño, O.A. Ruano, Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling, Acta Materialia 54(16) (2006) 4247-4259.

DOI: 10.1016/j.actamat.2006.05.018

Google Scholar

[18] M.Y. Zhan, Y.Y. Li, W.P. Chen, W.D. Chen, Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by accumulative roll-bonding, Journal of Materials Science 42(22) (2007) 9256-9261.

DOI: 10.1007/s10853-007-1885-2

Google Scholar

[19] W. Yuan, R.S. Mishra, B. Carlson, R.K. Mishra, R. Verma, R. Kubic, Effect of texture on the mechanical behavior of ultrafine grained magnesium alloy, Scripta Materialia 64(6) (2011) 580-583.

DOI: 10.1016/j.scriptamat.2010.11.052

Google Scholar

[20] S.M. Razavi, D.C. Foley, I. Karaman, K.T. Hartwig, O. Duygulu, L.J. Kecskes, S.N. Mathaudhu, V.H. Hammond, Effect of grain size on prismatic slip in Mg–3Al–1Zn alloy, Scripta Materialia 67(5) (2012) 439-442.

DOI: 10.1016/j.scriptamat.2012.05.017

Google Scholar

[21] J. Straska, M. Janecek, J. Gubicza, T. Krajnak, E.Y. Yoon, H.S. Kim, Evolution of microstructure and hardness in AZ31 alloy processed by high pressure torsion, Materials Science and Engineering: A 625 (2015) 98-106.

DOI: 10.1016/j.msea.2014.12.005

Google Scholar

[22] J. Xu, X.W. Wang, M. Shirooyeh, G.N. Xing, D.B. Shan, B. Guo, T.G. Langdon, Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy processed by high-pressure torsion, Journal of Materials Science 50(22) (2015) 7424-7436.

DOI: 10.1007/s10853-015-9300-x

Google Scholar

[23] D. Guan, W.M. Rainforth, J. Sharp, J. Gao, I. Todd, On the use of cryomilling and spark plasma sintering to achieve high strength in a magnesium alloy, Journal of Alloys and Compounds 688 (2016) 1141-1150.

DOI: 10.1016/j.jallcom.2016.07.162

Google Scholar

[24] H. Zhou, L. Hu, Y. Sun, H. Zhang, C. Duan, H. Yu, Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling, Materials Characterization 113 (2016) 108-116.

DOI: 10.1016/j.matchar.2016.01.014

Google Scholar

[25] C.L.P. Silva, R.B. Soares, P.H.R. Pereira, R.B. Figueiredo, V.F.C. Lins, T.G. Langdon, The Effect of High-Pressure Torsion on Microstructure, Hardness and Corrosion Behavior for Pure Magnesium and Different Magnesium Alloys, Advanced Engineering Materials 21(3) (2019) 1801081.

DOI: 10.1002/adem.201801081

Google Scholar

[26] H.K. Lin, J.C. Huang, High Strain Rate and/or Low Temperature Superplasticity in AZ31 Mg Alloys Processed by Simple High-Ratio Extrusion Methods, Materials Transactions 43(10) (2002) 2424-2432.

DOI: 10.2320/matertrans.43.2424

Google Scholar

[27] R.B. Figueiredo, S. Sabbaghianrad, A. Giwa, J.R. Greer, T.G. Langdon, Evidence for exceptional low temperature ductility in polycrystalline magnesium processed by severe plastic deformation, Acta Materialia 122 (2017) 322-331.

DOI: 10.1016/j.actamat.2016.09.054

Google Scholar

[28] M.M. Castro, D.R. Lopes, R.B. Soares, D.M.M. dos Santos, E.H.M. Nunes, V.F.C. Lins, P.H.R. Pereira, A. Isaac, T.G. Langdon, R.B. Figueiredo, Magnesium-Based Bioactive Composites Processed at Room Temperature, Materials 12(16) (2019) 2609.

DOI: 10.3390/ma12162609

Google Scholar

[29] D. Lopes, R.B. Soares, M.M. Castro, R.B. Figueiredo, T.G. Langdon, V.F.C. Lins, Corrosion Behavior in Hank's Solution of a Magnesium–Hydroxyapatite Composite Processed by High-Pressure Torsion, Advanced Engineering Materials 22 (2020) 2000765.

DOI: 10.1002/adem.202000765

Google Scholar

[30] M.M. Castro, W. Wolf, A. Isaac, M. Kawasaki, R.B. Figueiredo, Consolidation of magnesium and magnesium-quasicrystal composites through high‑pressure torsion, Letters on Materials 9(4s) (2019) 546-550.

DOI: 10.22226/2410-3535-2019-4-546-550

Google Scholar

[31] J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Grain boundary stability governs hardening and softening in extremely fine nanograined metals, Science 355(6331) (2017) 1292-1296.

DOI: 10.1126/science.aal5166

Google Scholar