The Role of Grain Size in the Mechanical Properties of Metals

Article Preview

Abstract:

It is now well established that the grain size is the fundamental microstructural feature of all polycrystalline materials. In practice, a very wide range of grain sizes will be needed in order to fully evaluate the effect of grain size on the mechanical properties of metals. For many years this was a significant limitation because it was not possible to use conventional thermomechanical processing to produce materials with submicrometer or nanometer grain sizes. Recently, this problem has been addressed by developing alternative processing techniques based on the application of severe plastic deformation. This overview demonstrates that, although the flow stress increases with decreasing grain size at low temperatures and decreases with decreasing grain size at high temperatures, this clear dichotomy in behavior may be adequately explained by using a single theoretical flow mechanism based on the occurrence of grain boundary sliding.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 353)

Pages:

149-156

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.O. Hall, The deformation and ageing of mild steel: III Discussion of results, Proc. Phys. Soc. B 64 (1951) 747-753.

DOI: 10.1088/0370-1301/64/9/303

Google Scholar

[2] N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953) 25-28.

Google Scholar

[3] T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater. 42 (1994) 2437-2443.

DOI: 10.1016/0956-7151(94)90322-0

Google Scholar

[4] R.B. Figueiredo, T.G. Langdon, Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall-Petch relationship and strain rate sensitivity, J. Mater. Res. Tech. 14 (2021) 137-159.

DOI: 10.1016/j.jmrt.2021.06.016

Google Scholar

[5] T.G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998-6010.

DOI: 10.1007/s10853-009-3780-5

Google Scholar

[6] T.G. Langdon, The mechanical properties of superplastic materials, Metall. Trans. A 13A (1982) 689-701.

Google Scholar

[7] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58(4) (2006) 33-39.

DOI: 10.1007/s11837-006-0213-7

Google Scholar

[8] R.Z. Valiev, O.A. Kaibyshev, R.I. Kuznetsov, R.Sh. Musalimov, N.K. Tsenev, Low-temperature superplasticity of metallic materials, Dokl. Akad. Nauk SSSR 301 (1988) 864-866.

Google Scholar

[9] J. Wongsa-Ngam, T.G. Langdon, Advances in superplasticity from a laboratory curiosity to the development of a superplastic forming industry, Metals 12 (2022) 1921.

DOI: 10.3390/met12111921

Google Scholar

[10] T.G. Langdon, Overview: Using severe plastic deformation in the processing of superplastic materials, Mater. Trans. (2023) in press (doi.org/.

Google Scholar

[11] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[12] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[13] M. Kawasaki, Z. Horita, T.G. Langdon, Microstructural evolution in high purity aluminum processed by ECAP, Mater. Sci. Eng. A 524 (2009) 143-150.

DOI: 10.1016/j.msea.2009.06.032

Google Scholar

[14] C. Xu, Z. Horita, T.G. Langdon, Microstructural evolution in an aluminum solid solution alloy processed by ECAP, Mater. Sci. Eng. A 528 (2011) 6059-6065.

DOI: 10.1016/j.msea.2011.04.017

Google Scholar

[15] A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion, Acta Mater. 51 (2003) 753–765.

DOI: 10.1016/s1359-6454(02)00466-4

Google Scholar

[16] J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon, A comparison of microstructures and mechanical properties in a Cu-Zr alloy processed using different SPD techniques, J. Mater. Sci. 48 (2013) 4653-4660.

DOI: 10.1007/s10853-012-7072-0

Google Scholar

[17] H. Ishikawa, F.A. Mohamed, T.G. Langdon, The influence of strain rate on ductility in the superplastic Zn-22% Al eutectoid, Phil. Mag. 32 (1975) 1269-1271.

DOI: 10.1080/14786437508228105

Google Scholar

[18] F.A. Mohamed, T.G. Langdon, Deformation mechanism maps for superplastic materials, Scripta Metall. 10 (1976) 759-762.

DOI: 10.1016/0036-9748(76)90358-6

Google Scholar

[19] F.R.N. Nabarro, Deformation of crystals by the motion of single ions, in: Report of a Conference on Strength of Solids, The Physical Society, London, U.K. (1984), pp.75-90.

Google Scholar

[20] C. Herring, Diffusional viscosity of a polycrystalline solid, J. Appl. Phys. 21 (1950) 437-445.

Google Scholar

[21] R.L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials, J. Appl. Phys. 34 (1963) 1679-1682.

DOI: 10.1063/1.1702656

Google Scholar

[22] J.E. Bird, A.K. Mukherjee, J.E. Dorn, Correlations between high-temperature creep behavior and structure, in: (D.G. Brandon and A. Rosen, Eds.), Quantitative Relation Between Properties and Microstructure Israel Universities Press, Jerusalem, Israel (1959) pp.255-342.

Google Scholar

[23] M. Kawasaki, T.G. Langdon, The many facets of deformation mechanism mapping and the application to nanostructured materials, J. Mater. Res. 28 (2013) 1827-1834.

DOI: 10.1557/jmr.2013.55

Google Scholar

[24] M. Kawasaki, H.J. Lee, T.G. Langdon, Microstructural homogeneity and superplastic behavior in an aluminum-copper eutectic alloy processed by high-pressure torsion, J. Mater. Sci. 50 (2015) 6700-6712.

DOI: 10.1007/s10853-015-9224-5

Google Scholar

[25] L.K.L. Falk, P.R. Howell, G.L. Dunlop, T.G. Langdon, The role of matrix dislocations in the superplastic deformation of a copper alloy, Acta Metall. 34 (1986) 1203-1214.

DOI: 10.1016/0001-6160(86)90007-6

Google Scholar

[26] R.Z. Valiev, T.G. Langdon, An investigation of the role of intragranular dislocation strain in the superplastic Pb-62% Sn eutectic alloy, Acta Metall. Mater. 41 (1993) 949-954.

DOI: 10.1016/0956-7151(93)90029-r

Google Scholar

[27] T.G. Langdon, An evaluation of the strain contributed by grain boundary sliding in superplasticity, Mater. Sci. Eng. A 174 (1994) 225-230.

DOI: 10.1016/0921-5093(94)91092-8

Google Scholar

[28] R.B. Figueiredo, M. Kawasaki, T.G. Langdon, Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress, Prog. Mater. Sci. 137 (2023) 101131.

DOI: 10.1016/j.pmatsci.2023.101131

Google Scholar

[29] Z.C. Cordero, B.E. Knight, C.A. Schuh, Six decades of the Hall=Petch effect – a survey of grain-size strengthening studies on pure metals, Int. Mater. Res. 61 (2016) 495-512.

DOI: 10.1080/09506608.2016.1191808

Google Scholar

[30] S.N. Naik, S.M. Whalley, The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals, J. Mater. Sci. 55 (2020) 2661-2681.

DOI: 10.1007/s10853-019-04160-w

Google Scholar

[31] N.Q. Chinh, D. Olasz, A.Q. Ahmed, G. Sáfrán, J. Lendvai, T.G. Langdon, Modification of the Hall-Petch relationship for submicron-sized fcc metals, Mater. Sci. Eng. A 862 (2023) 144419.

DOI: 10.1016/j.msea.2022.144419

Google Scholar