On the Application of some Plasticity Laws

Article Preview

Abstract:

Three main rheological laws are found in the literature to describe the strain hardening of materials at high temperatures. The choice of the most suited law to describe a flow stress curve is often discussed as a function of the nature of the material; but it still remains difficult to choose the most appropriate one. These semi-empirical laws systematically comprise two main terms linked either to the dislocations generation or their annihilation.The objective of this paper is to determine by an inverse method which law appears to be the most suited. It is finally demonstrated that the application of one law is mostly equivalent to another. The various laws are overall equivalent and do not help to describe some peculiar physical mechanism of plasticity.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 353)

Pages:

163-168

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Gourdet, « Étude des mécanismes de recristallisation au cours de la déformation a chaud de l'aluminium ».

DOI: 10.1051/jp4:1995323

Google Scholar

[2] A. Laasraoui et J. J. Jonas, « Prediction of steel flow stresses at high temperatures and strain rates », Metall. Trans. A, vol. 22, no 7, p.1545‑1558, juill. 1991.

DOI: 10.1007/BF02667368

Google Scholar

[3] U. F. Kocks, « Laws for Work-Hardening and Low-Temperature Creep », J. Eng. Mater. Technol., vol. 98, no 1, p.76‑85, janv. 1976.

DOI: 10.1115/1.3443340

Google Scholar

[4] Z. S. Basinski, « Thermally activated glide in face-centred cubic metals and its application to the theory of strain hardening », Philos. Mag., vol. 4, no 40, p.393‑432, avr. 1959.

DOI: 10.1080/14786435908233412

Google Scholar

[5] D. G. Cram, H. S. Zurob, Y. J. M. Brechet, et C. R. Hutchinson, « Modelling discontinuous dynamic recrystallization using a physically based model for nucleation », Acta Mater., vol. 57, no 17, p.5218‑5228, oct. 2009.

DOI: 10.1016/j.actamat.2009.07.024

Google Scholar

[6] S. Gourdet et F. Montheillet, « A model of continuous dynamic recrystallization », Acta Mater., vol. 51, no 9, p.2685‑2699, mai 2003.

DOI: 10.1016/S1359-6454(03)00078-8

Google Scholar

[7] G. Jacquet, « Etude de la cinétique de recristallisation au cours du laminage à chaud d'aciers inoxydables ferritiques stabilisés », These de doctorat, Saint-Etienne, EMSE, 2013.

Google Scholar

[8] F. Montheillet, D. Piot, N. Matougui, et M. L. Fares, « A Critical Assessment of Three Usual Equations for Strain Hardening and Dynamic Recovery », Metall. Mater. Trans. A, vol. 45A, no 10, p.4324, 2014.

DOI: 10.1007/s11661-014-2388-9

Google Scholar

[9] D. H. Sastry, Y. Prasad, et K. I. Vasu, « Low-temperature deformation behaviour of polycrystalline copper », J. Mater. Sci., vol. 6, no 12, Art. no 12, déc. 1971.

DOI: 10.1007/pl00020646

Google Scholar