Micro-Alloying Effect on the Inter-Critical Grain Coarsened Heat Affected Zone of a S355 Steel Welded Joint

Article Preview

Abstract:

The inter-critical heat affected zone (ICHAZ) appears to be one of the most brittle sections in the welding of high-strength micro-alloyed steels (HSLA). Following repeated heating cycles in in with temperature ranging Ac1 /Ac3, the ICHAZ will face with an evident toughness and fatigue behavior reduction especially due to martensite-austenite constituent (MA) formation. Microalloying in high strength steels causes the generation of some phases in the matrix able to increase the mechanical properties of the joint. In this paper we report an investigation related to 1000 ppm vanadium addition in the welded joint of a structural S355 steel. The inter-critical zone of ta double pass welded joint is here reproduced by dilatometer, with second peak temperature ranging 720°C-790°C. The residual austenite dependence on inter-critical temperature is analyzed and related to the hardness behavior.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 353)

Pages:

129-134

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Ma, L.Huang, G. Di, Y. Wang, Y. Yang, C. Ma, Effect of microalloying elements on microstructure and properties of quenched and tempered constructional steel, Materials Science and Engineering, 242 (2017) 012036.

DOI: 10.1088/1757-899x/242/1/012036

Google Scholar

[2] F. Liu, K. Chen, C. Kang, Z. Jiang, S. Ding, Effects of V–Nb microalloying on the microstructure and properties of spring steel under different quenching-tempering times, Journal of Materials Research and Technology, 19 (2022) 779-793.

DOI: 10.1016/j.jmrt.2022.05.043

Google Scholar

[3] A. Di Schino, M. Gaggiotti, C. Testani, Heat treatment effect on microstructure evolution in a 7% Cr steel for forging, Metals (Basel), 10 (2020) 808.

DOI: 10.3390/met10060808

Google Scholar

[4] B. Huchtemann, V. Schuler, A review of the development and application of microalloyed medium carbon steels, Steel Research International 58 (1987) 369-376.

DOI: 10.1002/srin.198700233

Google Scholar

[5] L. Sun, X. Liu, S. Lei, H. Li, Q. Zhai, Review on niobium application in microalloyed steel, Journal of Iron and Steel Research International, 29 (2022) 1513-1525.

DOI: 10.1007/s42243-022-00789-1

Google Scholar

[6] I. Olivares, M. Alanis, R. Mendoza B. Campillo, J.A. Juarez Isla, Ironmaking and steelmaking, 35 (2008) 452-457.

DOI: 10.1179/174328108x318879

Google Scholar

[7] D.J. Naylor, Microalloyed forging steels, Materials Science Forum, 284-286 (1998) 83-94.

DOI: 10.4028/www.scientific.net/msf.284-286.83

Google Scholar

[8] R. Battachararia, Microalloyed steels for the automotive industry, Tecnol. Metal.Mater. Miner,11 (2014) 371-383.

Google Scholar

[9] G. Stornelli, A. Tselikova, D. Mirabile Gattia, M. Mortello, R. Schmidt, M. Sgambetterra, C. Testani, G. Zucca, A. Di Schino, Influence of Vanadium micro-alloying on the microstructure of structural high strength steels welded joints, Materials, 16 (2023) 2897.

DOI: 10.3390/ma16072897

Google Scholar

[10] R.R. Thridandapani, R.D.K. Misra, T. Mannering, D. Panda, S. Jansto, The application of stereological analysis in understanding differences in toughness of V- and Nb-microalloyed steels of similar yield strength, Materials Science and Engineering A, 422 (2006) 285-291.

DOI: 10.1016/j.msea.2006.02.022

Google Scholar

[11] J.M. Rodriguez-Ibabe, Different Roles of Nb in TMP of Steels: from Classic Austenite Pancake to More Complex Interactions with the Microstructure, 6th International Conference on ThermoMechanical Processing, TMP 2022 – Proceedings.

Google Scholar

[12] S. Song, Z. X. Yuan, J. Jia, D. Shen, A. M. Guo, The role of tin in the hot-ductility deterioration of a low-carbon steel, Metallurgical and Materials Transactions A, 34 (2003) 1611-1616.

DOI: 10.1007/s11661-003-0306-7

Google Scholar

[13] B. Trevor, J. Speer, K. Findley, E. De Moor, Evolution of austenite microstructure and microalloy precipitation state during double-twist torsion testing on Nb-Ti-bearing steels, Materialia, 31 (2023) 101879.

DOI: 10.1016/j.mtla.2023.101879

Google Scholar

[14] S.S. Babu, H.K.D.H. Bhadeshia, Stress and the acicular ferrite transformation, Materials Science and Engineering: A, 156 (1992) 1–9.

DOI: 10.1016/0921-5093(92)90410-3

Google Scholar

[15] T. Kasuya, N. Yurioka, Carbon Equivalent and Multiplying Factor for Hardenability of Steel, Welding research supplement, 72 (1993) 263.

Google Scholar

[16] M. Hajisafari, S. Nategh, H. Yoozbashizadeh, A. Ekrami, Improvement in Mechanical Properties of Microalloyed Steel 30MSV6 by a Precipitation Hardening Process, Journal of Iron Steel and research International, 20 (2013) 66-73.

DOI: 10.1016/s1006-706x(13)60100-4

Google Scholar

[17] A. Di Schino, C. Testani, Corrosion behaviour and mechanical properties of AISI 316 stainless steel clad Q235 plate, Metals 10 (2020) 552.

DOI: 10.3390/met10040552

Google Scholar

[18] A. Di Schino, C. Guarnaschelli, Microstructure and cleavage resistance of high strength steels, Materials Science Forum, 638-642 (2010) 3188-3193.

DOI: 10.4028/www.scientific.net/msf.638-642.3188

Google Scholar

[19] J.M. Rodriguez-Ibabe, Production of a Non-Stoichiometric Nb-Ti HSLA Steel by Thermomechanical Processing on a Steckel Mill, Metals 13 (2023) 405.

DOI: 10.3390/met13020405

Google Scholar

[20] A. Di Schino, J.M. Kenny, M. Barteri, High temperature resistance of a high nitrogen and low nickel austenitic stainless steel, Journal of Materials Science Letters, 22 (2003) 691-693.

DOI: 10.4028/www.scientific.net/msf.426-432.975

Google Scholar

[21] A. Di Schino, J.M. Kenny, I. Salvatori, G. Abbruzzese, Modelling the primary recrystallization and grain growth in a low nickel austenitic stainless steel, Journal of Materials Science, 36 (2001) 593-601.

DOI: 10.4028/www.scientific.net/msf.426-432.1011

Google Scholar

[22] M. Gaggiotti, L. Albini, P.E. Di Nunzio, A. Di Schino, G. Stornelli, G. Tiracorrendo, Ultrafast Heating Heat Treatment Effect on the Microstructure and Properties of Steels, Metals (Basel), 12 (2022) 1313.

DOI: 10.3390/met12081313

Google Scholar

[23] O. Sitdikov, E. V. Avtokratova, O.E. Latypova, M. V. Markushev, Structure, strength and superplasticity of ultrafine-grained 1570C aluminum alloy subjected to different thermomechanical processing routes based on severe plastic deformation, Transactions of nonferrous Metls Society of China, 31 (2021) 887-900.

DOI: 10.1016/s1003-6326(21)65547-4

Google Scholar