[1]
Q. Ma, L.Huang, G. Di, Y. Wang, Y. Yang, C. Ma, Effect of microalloying elements on microstructure and properties of quenched and tempered constructional steel, Materials Science and Engineering, 242 (2017) 012036.
DOI: 10.1088/1757-899x/242/1/012036
Google Scholar
[2]
F. Liu, K. Chen, C. Kang, Z. Jiang, S. Ding, Effects of V–Nb microalloying on the microstructure and properties of spring steel under different quenching-tempering times, Journal of Materials Research and Technology, 19 (2022) 779-793.
DOI: 10.1016/j.jmrt.2022.05.043
Google Scholar
[3]
A. Di Schino, M. Gaggiotti, C. Testani, Heat treatment effect on microstructure evolution in a 7% Cr steel for forging, Metals (Basel), 10 (2020) 808.
DOI: 10.3390/met10060808
Google Scholar
[4]
B. Huchtemann, V. Schuler, A review of the development and application of microalloyed medium carbon steels, Steel Research International 58 (1987) 369-376.
DOI: 10.1002/srin.198700233
Google Scholar
[5]
L. Sun, X. Liu, S. Lei, H. Li, Q. Zhai, Review on niobium application in microalloyed steel, Journal of Iron and Steel Research International, 29 (2022) 1513-1525.
DOI: 10.1007/s42243-022-00789-1
Google Scholar
[6]
I. Olivares, M. Alanis, R. Mendoza B. Campillo, J.A. Juarez Isla, Ironmaking and steelmaking, 35 (2008) 452-457.
DOI: 10.1179/174328108x318879
Google Scholar
[7]
D.J. Naylor, Microalloyed forging steels, Materials Science Forum, 284-286 (1998) 83-94.
DOI: 10.4028/www.scientific.net/msf.284-286.83
Google Scholar
[8]
R. Battachararia, Microalloyed steels for the automotive industry, Tecnol. Metal.Mater. Miner,11 (2014) 371-383.
Google Scholar
[9]
G. Stornelli, A. Tselikova, D. Mirabile Gattia, M. Mortello, R. Schmidt, M. Sgambetterra, C. Testani, G. Zucca, A. Di Schino, Influence of Vanadium micro-alloying on the microstructure of structural high strength steels welded joints, Materials, 16 (2023) 2897.
DOI: 10.3390/ma16072897
Google Scholar
[10]
R.R. Thridandapani, R.D.K. Misra, T. Mannering, D. Panda, S. Jansto, The application of stereological analysis in understanding differences in toughness of V- and Nb-microalloyed steels of similar yield strength, Materials Science and Engineering A, 422 (2006) 285-291.
DOI: 10.1016/j.msea.2006.02.022
Google Scholar
[11]
J.M. Rodriguez-Ibabe, Different Roles of Nb in TMP of Steels: from Classic Austenite Pancake to More Complex Interactions with the Microstructure, 6th International Conference on ThermoMechanical Processing, TMP 2022 – Proceedings.
Google Scholar
[12]
S. Song, Z. X. Yuan, J. Jia, D. Shen, A. M. Guo, The role of tin in the hot-ductility deterioration of a low-carbon steel, Metallurgical and Materials Transactions A, 34 (2003) 1611-1616.
DOI: 10.1007/s11661-003-0306-7
Google Scholar
[13]
B. Trevor, J. Speer, K. Findley, E. De Moor, Evolution of austenite microstructure and microalloy precipitation state during double-twist torsion testing on Nb-Ti-bearing steels, Materialia, 31 (2023) 101879.
DOI: 10.1016/j.mtla.2023.101879
Google Scholar
[14]
S.S. Babu, H.K.D.H. Bhadeshia, Stress and the acicular ferrite transformation, Materials Science and Engineering: A, 156 (1992) 1–9.
DOI: 10.1016/0921-5093(92)90410-3
Google Scholar
[15]
T. Kasuya, N. Yurioka, Carbon Equivalent and Multiplying Factor for Hardenability of Steel, Welding research supplement, 72 (1993) 263.
Google Scholar
[16]
M. Hajisafari, S. Nategh, H. Yoozbashizadeh, A. Ekrami, Improvement in Mechanical Properties of Microalloyed Steel 30MSV6 by a Precipitation Hardening Process, Journal of Iron Steel and research International, 20 (2013) 66-73.
DOI: 10.1016/s1006-706x(13)60100-4
Google Scholar
[17]
A. Di Schino, C. Testani, Corrosion behaviour and mechanical properties of AISI 316 stainless steel clad Q235 plate, Metals 10 (2020) 552.
DOI: 10.3390/met10040552
Google Scholar
[18]
A. Di Schino, C. Guarnaschelli, Microstructure and cleavage resistance of high strength steels, Materials Science Forum, 638-642 (2010) 3188-3193.
DOI: 10.4028/www.scientific.net/msf.638-642.3188
Google Scholar
[19]
J.M. Rodriguez-Ibabe, Production of a Non-Stoichiometric Nb-Ti HSLA Steel by Thermomechanical Processing on a Steckel Mill, Metals 13 (2023) 405.
DOI: 10.3390/met13020405
Google Scholar
[20]
A. Di Schino, J.M. Kenny, M. Barteri, High temperature resistance of a high nitrogen and low nickel austenitic stainless steel, Journal of Materials Science Letters, 22 (2003) 691-693.
DOI: 10.4028/www.scientific.net/msf.426-432.975
Google Scholar
[21]
A. Di Schino, J.M. Kenny, I. Salvatori, G. Abbruzzese, Modelling the primary recrystallization and grain growth in a low nickel austenitic stainless steel, Journal of Materials Science, 36 (2001) 593-601.
DOI: 10.4028/www.scientific.net/msf.426-432.1011
Google Scholar
[22]
M. Gaggiotti, L. Albini, P.E. Di Nunzio, A. Di Schino, G. Stornelli, G. Tiracorrendo, Ultrafast Heating Heat Treatment Effect on the Microstructure and Properties of Steels, Metals (Basel), 12 (2022) 1313.
DOI: 10.3390/met12081313
Google Scholar
[23]
O. Sitdikov, E. V. Avtokratova, O.E. Latypova, M. V. Markushev, Structure, strength and superplasticity of ultrafine-grained 1570C aluminum alloy subjected to different thermomechanical processing routes based on severe plastic deformation, Transactions of nonferrous Metls Society of China, 31 (2021) 887-900.
DOI: 10.1016/s1003-6326(21)65547-4
Google Scholar