A New Approach for Sintering Simulation of Irregularly Shaped Powder Particles

Article Preview

Abstract:

In sintering simulation, there are basically two approaches: microscale simulation, in which distinct particles or pores are regarded, and macroscale, where the porous body is regarded as continuum with variable density.Material parameters of the latter can be determined by experiment or by microscale models.Current microscale sintering models mainly use circular resp.~spherical particle geometries to represent the actual shape of real particles.However, sintering behavior is heavily dependent on the morphology of the powder particles, since sintering progress is driven by reduction of the bound surface energy.So current models neglect the influence of local contact morphology.Here, a finite differences based microscopic sintering model is presented, which is capable to work with irregular particle geometries.Asymmetric particle contacts in shape and substance are possible within.The differences between circular particle contacts and asymmetric ones are investigated.Furthermore, a statistical way of describing the morphology of powder particles and its inclusion into sintering simulation using Monte Carlo techniques are shown.Morphology data are obtained from microscopic imaging by extracting the 2D contours.The particles' contour lines are fitted to a parameterized shape function including ovality and first order waves to obtain a description of the particles' fine shapes.From the statistical distribution of the shape parameters, randomized particle groupings are sampled as input for microscopic sintering simulation.Statistical analysis of the samples' sintering behaviors leads to statements about the powder's.Comparisons to classical spherical modelling are given.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 353)

Pages:

157-161

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. L. Coble. "Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models". In: Journal of Applied Physics 32.5 (May 1961), pp.787-792.

DOI: 10.1063/1.1736107

Google Scholar

[2] E. Arzt. "The Influence of an Increasing Particle Coordination on the Densification of Spherical Powders". In: Acta Metallurgica 30.10 (Oct. 1982), pp.1883-1890.

DOI: 10.1016/0001-6160(82)90028-1

Google Scholar

[3] J. Svoboda and H. Riedel. "New Solutions Describing the Formation of Interparticle Necks in Solid-State Sintering". In: Acta Metallurgica et Materialia 43.1 (1995), pp.1-10. DOI: 10. 1016/0956-7151(95)90255-4.

DOI: 10.1016/0956-7151(95)90255-4

Google Scholar

[4] J. Léchelle, S. Martin, R. Boyer, and K. Saikouk. "A Sub-Granular Scale Model for Solid State Free Sintering: Results on the Evolution of Two Grains". In: Journal of Chemical Technology and Metallurgy 49.3 (2014), pp.263-274.

Google Scholar

[5] K. Shinagawa. "Simulation of Grain Growth and Sintering Process by Combined Phase-Field / Discrete-Element Method". In: Acta Materialia 66 (Mar. 2014), pp.360-369. DOI: 10.1016/ j.actamat.2013.11.023.

DOI: 10.1016/j.actamat.2013.11.023

Google Scholar

[6] K. Asp and J. Ågren. "Phase-Field Simulation of Sintering and Related Phenomena - A Vacancy Diffusion Approach". In: Acta Materialia 54.5 (Mar. 2006), pp.1241-1248. DOI: 10. 1016/j.actamat.2005.11.005.

DOI: 10.1016/j.actamat.2005.11.005

Google Scholar

[7] M. Weiner, M. Schmidtchen, and U. Prahl. "A New Approach for Sintering Simulation of Irregularly Shaped Powder Particles - Part I: Model Development and Case Studies". In: Advanced Engineering Materials (Feb. 2022).

DOI: 10.1002/adem.202101513

Google Scholar

[8] M. Weiner, T. Zienert, M. Schmidtchen, J. Hubálková, C. G. Aneziris, and U. Prahl. "A New Approach for Sintering Simulation of Irregularly Shaped Powder Particles - Part II: Statistical Powder Modelling". In: Advanced Engineering Materials (June 2022). DOI: 10.1002/adem. 202200443.

DOI: 10.1002/adem.202200443

Google Scholar

[9] T. Zienert, D. Endler, J. Hubálková, P. Gehre, M. Eusterholz, T. Boll, M. Heilmaier, G. Günay, A. Weidner, H. Biermann, B. Kraft, S. Wagner, and C. G. Aneziris. "Coarse-Grained Refractory Composite Castables Based on Alumina and Niobium". In: Advanced Engineering Materials (May 2022).

DOI: 10.1002/adem.202200296

Google Scholar

[10] T. Zienert, D. Endler, N. Brachhold, M. Weiner, M. Schmidtchen, U. Prahl, and C. G. Aneziris. "Characterisation of Sintered Niobium/Alumina Refractory Composite Granules Synthesised by Castable Technology". In: Advanced Engineering Materials (May 2022). DOI: 10.1002/ adem.202200407.

DOI: 10.1002/adem.202200407

Google Scholar