Diffusion in Metallic Glass-Forming Systems: A Description of the Kink Behavior Observed in the Temperature Dependence

Article Preview

Abstract:

The temperature dependence of the diffusion coefficient in metallic glass-forming systems do not follow the Arrhenius behavior over a wide temperature range. Instead, it exhibits a kink behavior at around the glass transition temperature. Some researchers associate this behavior to the difference in the diffusion mechanism operating in the glassy and the supercooled liquid state, whereas others do not support this view. In addition, usually, the temperature dependence of the diffusion coefficient is analyzed by splitting the temperature range into two regions, above and below the glass transition temperature. In the present study, we developed an analytical theory that describes the continuous variation of the diffusion coefficient across a temperature where the kink behavior is observed. According to the theory, the kink behavior arises from the freezing of free volume available for diffusion by lowering the temperature. A connection to the vacancy mechanism of diffusion has been also pointed out.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 353)

Pages:

143-148

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. L. Greer, Mater. Today 12 (2009) 14.

Google Scholar

[2] W. H. Wang, Prog. Mater. Sci. 106 (2019) 100561.

Google Scholar

[3] C. Suryanarayana, A. Inoue, Bulk Metallic Glasses, CRC Press, Boca Raton, 2011.

Google Scholar

[4] Z. Li, Z. Huang, F. Sun, X. Li, J. Ma, Mater. Today Adv. 7 (2020) 100077.

Google Scholar

[5] A. Sharma, V. Zadorozhnyy, Metals 11 (2021) 1933.

Google Scholar

[6] F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H.R. Schober, S.K. Sharma, H. Teichler, Rev. Mod. Phys. 75 (2003) 237.

DOI: 10.1103/revmodphys.75.237

Google Scholar

[7] K. Rätzke, V. Zöllmer, A. Bartsch, A. Meyer, F. Faupel, J. Non-Cryst. Solids 353 (2007) 3285.

DOI: 10.1016/j.jnoncrysol.2007.05.157

Google Scholar

[8] U. Geyer, S. Schneider, W.L. Johnson, Y. Qiu, T.A. Tombrello, M.-P. Macht, Phys. Rev. Lett. 75 (1995) 2364.

Google Scholar

[9] X.-P. Tang, U. Geyer, R. Busch, W.L. Johnson, Y. Wu, Nature 402 (1999) 160.

Google Scholar

[10] K. Knorr, M.-P.Macht, K. Freitag, H. Mehrer, J. Non-Cryst. Solids 250-252 (1999) 669.

Google Scholar

[11] H. Nakajima, T. Kojima, K. Nonaka, T. Zhang, A. Inoue, N. Nishiyama, Mater. Res. Soc. Symp. Proc. 644 (2001) L2.2.1.

Google Scholar

[12] T. Zumkley, V. Naundorf, M.-P. Macht, P. Fielitz, G. Frohberg, Mater. Trans. 43 (2002) 1921.

DOI: 10.2320/matertrans.43.1921

Google Scholar

[13] A. Griesche, M.-P. Macht, S. Suzuki, K.-H. Kraatz, G. Frohberg, Scri. Mater. 57 (2007) 477.

Google Scholar

[14] V.M. Syutkin, S. Crebenkin, Appl. Phys. Lett. 117 (2020) 134104.

Google Scholar

[15] F. Demmel, J. Phys.: Condens. Matter 34 (2022) 395101.

Google Scholar

[16] M. Ikeda, M. Aniya, Phil. Mag. 103 (2023) 101.

Google Scholar

[17] M. Ikeda, M. Aniya, J. Non-Cryst. Solids 431 (2016) 52.

Google Scholar

[18] N.H. March, M.P. Tosi, Introduction to Liquid State Physics, World Scientific, Singapore, 2002.

Google Scholar

[19] Y. Gueguen, T. Rouxel, P. Gadaud, C. Bernard, V. Keryvin, J.-C. Sangleboeuf, Phys. Rev. B 84 (2011) 064201.

Google Scholar

[20] M. Koiwa, H. Nakajima, Diffusion in Materials (in Japanese), Uchida Rokakuho Pub., Tokyo, 2009.

Google Scholar

[21] M. Aniya, J. Therm. Anal. Cal. 69 (2002) 971.

Google Scholar

[22] M. Aniya, M. Ikeda, Mater. Sci Forum 783-786 (2014) 1889.

Google Scholar

[23] M. Aniya, M. Ikeda, Sahara, Mater. Sci. Forum 879 (2017) 151.

Google Scholar

[24] T. Ichitsubo, S. Yukitani, E. Matsubara, H. Kato, J. Soc. Mater. Sci. Jpn. 62 (2013) 167.

Google Scholar

[25] J.F. Löffler, P. Thiyagarajan, W.L. Johnson, J. Appl. Cryst. 33 (2000) 500.

Google Scholar

[26] M. Aniya, Solid State Phenom. 330 (2022) 11.

Google Scholar

[27] M. Aniya, Solid State Ionics 136-137 (2000) 1085.

Google Scholar