[1]
S. Equey, A. Houriet, S. Mischler, Wear and frictional mechanisms of copper-based bearing alloys, Wear, 273 (2011) 9–16
DOI: 10.1016/j.wear.2011.03.030
Google Scholar
[2]
P.L. Ko, M.F. Robertson, Wear characteristics of electrolytic hard chrome and thermal sprayed WC–10 Co–4 Cr coatings sliding against Al–Ni–bronze in air at 21◦C and at −40◦C, Wear, 252 (2002), 880–893
DOI: 10.1016/s0043-1648(02)00052-2
Google Scholar
[3]
J.M. Tura, A. Traveria, M.D. de Castellar, J. Pujadas, J. Blouet, R. Gras, H.G. Magham, P. Belair , T. Hanau, A. Romero, Frictional properties and wear of a molybdenum coating and a bronze (Cu-lO%Sn) with friction modifier fillers, Wear, 189 (1995),70-76
DOI: 10.1016/0043-1648(95)06647-0
Google Scholar
[4]
S. Wan, X.Cui, Q.Jin, J.Ma, X.Wen, W. Su, X. Zhang, G. Jin, H. Tian, Microstructure and properties of cold sprayed aluminum bronze coating on MBLS10A-200 magnesium-lithium alloy, Materials Chemistry and Physics, 281 (2022), 125832
DOI: 10.1016/j.matchemphys.2022.125832
Google Scholar
[5]
I dir A, Younes R, Bradai MA, Sadeddine A, Baiamonte L, Pintaude G. Correlation of Tensile Properties of Arc-Sprayed Coatings and Easy Testing Methods, Coatings, 2023; 13(5):878
DOI: 10.3390/coatings13050878
Google Scholar
[6]
Y. Zhang, L. Li, X. Wang, Y. Zhao, Q. Chang, W. Wang, A. Xu, Experimental study on aluminum bronze coating fabricated by electro-spark deposition with subsequent ultrasonic surface rolling, Surface & Coatings Technology, 426 (2021), 127772
DOI: 10.1016/j.surfcoat.2021.127772
Google Scholar
[7]
H. Assadi, H.Kreye, F.Gartner, T. Klassen, Cold spraying -A materials perspective, Acta Materialia, 116 (2016), pp.382-407
DOI: 10.1016/j.actamat.2016.06.034
Google Scholar
[8]
Tan, K.S., Wharton, J.A., Wood, R.J.K., Solid particle erosion-corrosion behaviour of a novel HVOF nickel aluminium bronze coating for marine applications - Correlation between mass loss and electrochemical measurements, Wear, 258 (2005) 1-4 SPEC. ISS., p.629–640
DOI: 10.1016/j.wear.2004.02.019
Google Scholar
[9]
Alian, A., Jalham, I.S., Abrasive wear resistance comparative study of plasma - Sprayed steel by magnesium zirconate, aluminum-bronze, molybdenum, and mixtures of them as coating materials, Arabian Journal for Science and Engineering, 31 (2006) 1 B, p.27–34
Google Scholar
[10]
Dimaté Castllanos, L.M., Olaya Florez, J.J., Alfonso Orjuela, J.E. Corrosion resistance of Cu-Al coatings produced by thermal spray, Ingenieria e Investigacion, 32 (2012) (1), p.18–23
DOI: 10.15446/ing.investig.v32n1.28515
Google Scholar
[11]
Hauer, M., Henkel, K.M., Krebs, S., Kroemmer, W., Study of Traverse Speed Effects on Residual Stress State and Cavitation Erosion Behavior of Arc-Sprayed Aluminum Bronze Coating, Journal of Thermal Spray Technology, 26 (2017) (1-2), p.217–228
DOI: 10.1007/s11666-016-0446-0
Google Scholar
[12]
Z. Arabgol, M. Villa Vidaller, H. Assadi, F.Gartner, T. Klassen, Influence of thermal properties and temperature of substrate on the quality of cold-sprayed deposits, Acta Materialia, 127 (2017), pp.287-301
DOI: 10.1016/j.actamat.2017.01.040
Google Scholar
[13]
J.M. Miguel, J.M. Guilemany, S. Dosta, Effect of the spraying process on the microstructure and tribological properties of bronze–alumina composite coatings, Surface & Coatings Technology, 205 (2010) pp.2184-2190
DOI: 10.1016/j.surfcoat.2010.08.150
Google Scholar
[14]
R.C. Barik, J.A. Wharton, R.J.K. Wood, K.S. Tan, K.R. Stokes, Erosion and erosion–corrosion performance of cast and thermally sprayed nickel–aluminium bronze, Wear, 259 (2005) 230–242
DOI: 10.1016/j.wear.2005.02.033
Google Scholar
[15]
K.S. Tan, J.A. Wharton, R.J.K. Wood, Solid particle erosion–corrosion behaviour of a novel HVOF nickel aluminium bronze coating for marine applications—correlation between mass loss and electrochemical measurements, Wear 258 (2005) 629–640
DOI: 10.1016/j.wear.2004.02.019
Google Scholar
[16]
Z.Shi, L. Xu, Ch. Deng, M. Liu, H. Liao, G. Darut, M.-P. Planche, Effects of frequency on the fretting wear behavior of aluminum bronze coatings, Surface & Coatings Technology, 457 (2023) 129306
DOI: 10.1016/j.surfcoat.2023.129306
Google Scholar
[17]
K.S. Tan, R.J.K. Wood, K.R. Stokes, he slurry erosion behaviour of high velocity oxy-fuel (HVOF) sprayed aluminium bronze coatings, Wear, 255 (2003), 195–205
DOI: 10.1016/S0043-1648(03)00088-7
Google Scholar
[18]
J.M. Miguel , J.M. Guilemany, S. Dosta, Effect of the spraying process on the microstructure and tribological properties of bronze–alumina composite coatings, Surface & Coatings Technology 205 (2010) 2184–2190
DOI: 10.1016/j.surfcoat.2010.08.150
Google Scholar
[19]
P. Das, S. Paul, P.P. Bandyopadhyay, Tribological behaviour of HVOF sprayed diamond reinforced bronze coatings, Diamond & Related Materials, 93 (2019), 16–25
DOI: 10.1016/j.diamond.2019.01.014
Google Scholar
[20]
T. Kubaszek, P. Zgódka, A. Słyś, M. Góral, M. Drajewicz, The influence of selected plasma spraying parameters on microstructure and porosity of molybdenum coating, Ocrhona przed korozją, 10 (2022), 315-321
DOI: 10.15199/40.2022.10.1
Google Scholar
[21]
Goral, M., Kubaszek, T., Grabon, W.A., Grochalski, K., Drajewicz, M., The Concept of WC-CrC-Ni Plasma-Sprayed Coating with the Addition of YSZ Nanopowder for Cylinder Liner Applications, Materials, 2023, 16(3), 1199
DOI: 10.3390/ma16031199
Google Scholar
[22]
E. Jonda, M. Szala , M. Sroka , L. Łatka, M. Walczak, Investigations of cavitation erosion and wear resistance of cermet coatings manufactured by HVOF spraying, Applied Surface Science, 608 (2023), 155071
DOI: 10.1016/j.apsusc.2022.155071
Google Scholar