Confinement of the Permittivity Enhancing Fillers in Bacterial Cellulose for Dielectric Elastomer Applications

Article Preview

Abstract:

The electromechanical performances of dielectric elastomers were investigated after the incorporation of the confined permittivity enhancing fillers in bacteria cellulose (BC) into polydimethylsiloxane (PDMS) films. The purpose of this study is to investigate the capability of BC as a confinement matrix for the permittivity enhancing fillers to overcome the low relative permittivity and at the same time to increase the softness of the PDMS films. The metal oxide and silicone oil were confined in BC before being physically mixed with PDMS at different percentages. The results showed that the confined TiO2-BC increased the relative permittivity and at the same time maintained the softness of the PDMS films to some extent. In addition to that, by adding confined silicone oil-BC into the PDMS films, this PDMS based dielectric elastomer (DE) becomes even softer.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, "High-speed electrically actuated elastomers with strain greater than 100%," Science (1979), vol. 287, no.5454, 2000.

DOI: 10.1126/science.287.5454.836

Google Scholar

[2] N. Ni and L. Zhang, "Dielectric Elastomer Sensors," in Elastomers, 2017.

DOI: 10.5772/intechopen.68995

Google Scholar

[3] F. B. Madsen, L. Yu, A. E. Daugaard, S. Hvilsted, and A. L. Skov, "Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers," Polymer (Guildf), vol. 55, no. 24, p.6212–6219, Nov. 2014.

DOI: 10.1016/j.polymer.2014.09.056

Google Scholar

[4] F. Galantini, S. Bianchi, V. Castelvetro, and G. Gallone, "Functionalized carbon nanotubes as a filler for dielectric elastomer composites with improved actuation performance," Smart Mater Struct, vol. 22, no. 5, p.055025, May 2013.

DOI: 10.1088/0964-1726/22/5/055025

Google Scholar

[5] Y. Wang, S. Kim, G. P. Li, and L. Z. Sun, "Filler orientation effect on relative permittivity of dielectric elastomer nanocomposites filled with carbon nanotubes," Comput Mater Sci, vol. 104, p.69–75, Jun. 2015.

DOI: 10.1016/J.COMMATSCI.2015.03.022

Google Scholar

[6] P. S. Mazurek, L. ; Yu, R. ; Gerhard, W. ; Wirges, and A. L. Skov, "Glycerol as high- permittivity liquid filler in dielectric silicone elastomers," J Appl Polym Sci, vol. 133, no. 43, 2016.

DOI: 10.1002/app.44153

Google Scholar

[7] L. Yu and A. L. Skov, "ZnO as a cheap and effective filler for high breakdown strength elastomers," RSC Adv, vol. 7, no. 72, p.45784–45791, 2017.

DOI: 10.1039/c7ra09479e

Google Scholar

[8] V. Cârlescu, G. PrisǍcaru, and D. Olaru, "Electromechanical response of silicone dielectric elastomers," in IOP Conference Series: Materials Science and Engineering, Sep. 2016, vol. 147, no.1.

DOI: 10.1088/1757-899X/147/1/012057

Google Scholar

[9] P. Mazurek, L. Yu, R. Gerhard, W. Wirges, and A. L. Skov, "Glycerol as high-permittivity liquid filler in dielectric silicone elastomers," J Appl Polym Sci, vol. 133, no. 43, Nov. 2016.

DOI: 10.1002/app.44153

Google Scholar

[10] D. Onggo, O. K. Putri, and M. Aminah, "Utilization of nata de coco as a matrix for preparation of thin film containing spin crossover iron (II) complexes," IOP Conf Ser Mater Sci Eng, vol. 79, p.012021, Jun. 2015.

DOI: 10.1088/1757-899X/79/1/012021

Google Scholar

[11] K. Potivara and M. Phisalaphong, "Development and characterization of bacterial cellulose reinforced with natural rubber," Materials, vol. 12, no. 14, 2019.

DOI: 10.3390/ma12142323

Google Scholar

[12] M. Matsumoto, M. Yamamoto, and K. Kondo, "Use of Bacterial Cellulose from Nata de Coco as Base Polymer for Liquid Membranes Containing Ionic Liquids," Aust J Chem, vol. 65, no. 11, p.1497, 2012.

DOI: 10.1071/CH12307

Google Scholar

[13] D. Ciecholewska-Juśko et al., "Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings," Carbohydr Polym, vol. 253, p.117247, Feb. 2021.

DOI: 10.1016/j.carbpol.2020.117247

Google Scholar

[14] M. T. Luo et al., "Cellulose-based absorbent production from bacterial cellulose and acrylic acid: Synthesis and performance," Polymers (Basel), vol.10, no. 7, p.702, Jun. 2018.

DOI: 10.3390/polym10070702

Google Scholar

[15] M. Razzaghi Kashani, S. Javadi, and N. Gharavi, "Dielectric properties of silicone rubber- titanium dioxide composites prepared by dielectrophoretic assembly of filler particles," Smart Mater Struct, vol. 19, no. 3, 2010.

DOI: 10.1088/0964-1726/19/3/035019

Google Scholar

[16] M. Razzaghi-Kashani, N. Gharavi, and S. Javadi, "The effect of organo-clay on the dielectric properties of silicone rubber," Smart Mater Struct, vol. 17, no. 6, p.065035, Dec. 2008.

DOI: 10.1088/0964-1726/17/6/065035

Google Scholar

[17] M. Adrees et al., "Characterization of novel polydimethylsiloxane (PDMS) and copolymer polyvinyl chloride-co-vinyl acetate (PVCA) enhanced polymer blend membranes for CO2 separation," Polym Test, vol. 80, p.106163, Dec. 2019.

DOI: 10.1016/j.polymertesting.2019.106163

Google Scholar

[18] H. NADIA, C. I. MOHD, A. MOHD, and A. ISHAK, "Physicochemical Properties and Characterization of Nata de Coco from Local Food Industries as a Source of Cellulose," Sains Malays, vol. 41, no. 2, p.205–211, Feb. 2012.

Google Scholar

[19] A. B. Beltran, G. M. Nisola, E. Cho, E. E. D. Lee, and W. J. Chung, "Organosilane modified silica/polydimethylsiloxane mixed matrix membranes for enhanced propylene/nitrogen separation," Appl Surf Sci, vol. 258, no. 1, p.337–345, Oct. 2011.

DOI: 10.1016/j.apsusc.2011.08.061

Google Scholar

[20] J. Wang, Y. Li, Z. Zhang, and Z. Hao, "Mesoporous KIT-6 silica-polydimethylsiloxane (PDMS) mixed matrix membranes for gas separation," J Mater Chem A Mater, vol. 3, no. 16, p.8650–8658, Apr. 2015.

DOI: 10.1039/c4ta07127a

Google Scholar

[21] T. Xu et al., "Sulfonated titania submicrospheres-doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability," J Power Sources, vol. 196, no. 11, p.4934–4942, Jun. 2011, doi:10.1016/j.jpowsour. 2011.02.017.

DOI: 10.1016/j.jpowsour.2011.02.017

Google Scholar

[22] B. Alonso and C. Sanchez, "Structural investigation of polydimethylsiloxane-vanadate hybrid materials," J Mater Chem, vol. 10, no. 2, p.377–386, Jan. 2000.

DOI: 10.1039/a908032e

Google Scholar

[23] D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, "Raman, mid-infrared, near-infrared and ultraviolet-visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials," J Mol Struct, vol. 976, no. 1–3, p.274–281, Jul. 2010.

DOI: 10.1016/j.molstruc.2010.03.054

Google Scholar

[24] L. M. Johnson et al., "Elastomeric microparticles for acoustic mediated bioseparations," J Nanobiotechnology, vol. 11, no. 1, p.22, Jun. 2013.

DOI: 10.1186/1477-3155-11-22

Google Scholar

[25] B. Julián, C. Gervais, E. Cordoncillo, P. Escribano, F. Babonneau, and C. Sanchez, "Synthesis and characterization of transparent PDMS-metal-oxo based organic-inorganic nanocomposites," Chemistry of Materials, vol. 15, no. 15, p.3026–3034, Jul. 2003.

DOI: 10.1021/cm031054l

Google Scholar

[26] V. A. Zeitler and C. A. Brown, "The infrared spectra of some Ti-O-Si, Ti-O-Ti and Si-O-Si compounds," Journal of Physical Chemistry, vol. 61, no. 9, p.1174–1177, 1957.

DOI: 10.1021/j150555a010

Google Scholar

[27] S. S. Wang et al., "Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production," RSC Adv, vol. 7, no. 71, p.45145–45155, Sep. 2017.

DOI: 10.1039/c7ra08391b

Google Scholar

[28] S. R. Gaboury and M. W. Urban, "Quantitative analysis of the Si-H groups formed on poly(dimethylsiloxane) surfaces: an ATR FTi.r. approach," Polymer (Guildf), vol. 33, no. 23, p.5085–5089, Jan. 1992.

DOI: 10.1016/0032-3861(92)90063-3

Google Scholar

[29] M. T. S. Tavares et al., "TiO2/PDMS nanocomposites for use on self-cleaning surfaces," Surf Coat Technol, vol. 239, p.16–19, Jan. 2014.

DOI: 10.1016/j.surfcoat.2013.11.009

Google Scholar

[30] R. H. Marchessault and P. R. Sundararajan, "Cellulose." Academic Press, p.11–95, Jan. 01, 1983.

DOI: 10.1016/b978-0-12-065602-8.50007-8

Google Scholar

[31] N.K. Sethy, Z. Arif, P.K. Mishra, and P. Kumar, "Nanocomposite film with green synthesized TiO2 nanoparticles and hydrophobic polydimethylsiloxane polymer: Synthesis, characterization, and antibacterial test," Journal of Polymer Engineering, vol. 40, no. 3, p.211–220, Mar. 2020.

DOI: 10.1515/polyeng-2019-0257

Google Scholar

[32] L. Yu, S. Vudayagiri, S. Zakaria, M. Yahia Benslimane, and A. L. Skov, "Filled liquid silicone rubbers: Possibilities and challenges," 2014.

DOI: 10.1117/12.2044565

Google Scholar

[33] D. E. Hanson et al., "Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the Mullins effect," Polymer (Guildf), vol. 46, no. 24, p.10989–10995, Nov. 2005.

DOI: 10.1016/j.polymer.2005.09.039

Google Scholar

[34] Z. Wang, C. Xiang, X. Yao, P. Le Floch, J. Mendez, and Z. Suo, "Stretchable materials of high toughness and low hysteresis," Proc Natl Acad Sci U S A, vol. 116, no. 13, p.5967–5972, 2019.

DOI: 10.1073/pnas.1821420116

Google Scholar

[35] F. B. Madsen, S. B. Zakaria, L. ; Yu, and A. L. Skov, "Mechanical and Electrical Ageing Effects on the Long-Term Stretching of Silicone Dielectric Elastomers with Soft Fillers: Long-Term Stretching of Silicone Dielectric Elastomers," Adv Eng Mater, no. 7, p.18, 2016.

DOI: 10.1002/adem.201600074

Google Scholar

[36] P. Mazurek, S. Hvilsted, and A. L. Skov, "Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS," Polymer (Guildf), vol. 87, p.1–7, Mar. 2016.

DOI: 10.1016/j.polymer.2016.01.070

Google Scholar

[37] F. B. Madsen, L. Yu, S. Hvilsted, and A. L. Skov, "Super soft silicone elastomers with high dielectric permittivity," in Electroactive Polymer Actuators and Devices (EAPAD) 2015, Apr. 2015, vol. 9430, p. 94301D.

DOI: 10.1117/12.2082929

Google Scholar

[38] S. Vudayagiri, S. Zakaria, L. Yu, S. S. Hassouneh, M. Benslimane, and A. L. Skov, "High breakdown-strength composites from liquid silicone rubbers," Smart Mater Struct, vol. 23, no. 10, Oct. 2014.

DOI: 10.1088/0964-1726/23/10/105017

Google Scholar