Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)/Amethyst Composites: Preparation, Properties, and Potential for Sustainable Energy Materials

Article Preview

Abstract:

This study investigates the fabrication and potential application of novel sustainable energy materials from poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/amethyst composite films. Solution processing and casting techniques were employed to prepare these composites with varying amethyst content (0 – 0.5 phr). The film characteristics, including appearance, dispersion, morphology, density, and mechanical properties, were comprehensively analyzed. Optical microscopy (OM) revealed good dispersion of amethyst at low loadings, while higher loadings exhibited a tendency towards agglomeration. Notably, the mechanical properties of the composites improved with increasing amethyst content. Tensile strength increased from 5.57 to 13.04 N/mm², strain at break increased from 4.33 to 15.74%, and Young's modulus increased from 156.00 to 258.21 N/mm². The combined properties of PVDF-HFP and amethyst suggest their potential for application in sustainable energy generation. Future work will be directed towards exploring this possibility through further characterization relevant to energy applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 366)

Pages:

21-28

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Parangusan, D. Ponnamma, M. Al Ali AlMaadeed, Flexible tri-layer piezoelectric nanogenerator based on PVDF-HFP/Ni-doped ZnO nanocomposites, RSC Advances. 7 (2017) 50156–50165.

DOI: 10.1039/c7ra10223b

Google Scholar

[2] D. Lei, N. Hu, L. Wu, Alamusi, H. Ning, Y. Wang, Z. Jin, Y. Liu, Improvement of the piezoelectricity of PVDF-HFP by CoFe2O4 nanoparticles, Nano Materials Science. 6 (2024) 201–210. https://doi.org/.

DOI: 10.1016/j.nanoms.2023.03.002

Google Scholar

[3] L. Wu, G. Huang, N. Hu, S. Fu, J. Qiu, Z. Wang, J. Ying, Z. Chen, W. Li, S. Tang, Improvement of the piezoelectric properties of PVDF-HFP using AgNWs, RSC Advances. 4 (2014) 35896–35903.

DOI: 10.1039/c4ra03382e

Google Scholar

[4] H. Wang, H. Xie, S. Wang, Z. Gao, C. Li, G.-H. Hu, C. Xiong, Enhanced dielectric property and energy storage density of PVDF-HFP based dielectric composites by incorporation of silver nanoparticles-decorated exfoliated montmorillonite nanoplatelets, Composites Part A: Applied Science and Manufacturing. 108 (2018) 62–68. https://doi.org/.

DOI: 10.1016/j.compositesa.2018.02.020

Google Scholar

[5] M. Zahid, S. Touili, M. Amjoud, D. Mezzane, M. Gouné, H. Uršič, M. Šadl, Y. Elamraoui, K. Hoummada, Z. Kutnjak, M. El Marssi, Dielectric and energy storage properties of surface-modified BaTi0.89Sn0.11O3@polydopamine nanoparticles embedded in a PVDF-HFP matrix, RSC Advances. 13 (2023) 26041–26049.

DOI: 10.1039/d3ra03935h

Google Scholar

[6] K. Keum, J.S. Heo, J. Eom, K.W. Lee, S.K. Park, Y.-H. Kim, Highly Sensitive Textile-Based Capacitive Pressure Sensors Using PVDF-HFP/Ionic Liquid Composite Films, Sensors. 21 (2021).

DOI: 10.3390/s21020442

Google Scholar

[7] A. Daneshkhah, S. Shrestha, M. Agarwal, K. Varahramyan, Poly(vinylidene fluoride-hexafluoropropylene) composite sensors for volatile organic compounds detection in breath, Sensors and Actuators B: Chemical. 221 (2015) 635–643. https://doi.org/.

DOI: 10.1016/j.snb.2015.06.145

Google Scholar

[8] N. Terasawa, N. Ono, Y. Hayakawa, K. Mukai, T. Koga, N. Higashi, K. Asaka, Effect of hexafluoropropylene on the performance of poly(vinylidene fluoride) polymer actuators based on single-walled carbon nanotube–ionic liquid gel, Sensors and Actuators B: Chemical. 160 (2011) 161–167. https://doi.org/.

DOI: 10.1016/j.snb.2011.07.027

Google Scholar

[9] N. Nur, Z. Yeğingil, M. Topaksu, K. Kurt, T. Doğan, N. Sarıgül, M. Yüksel, V. Altunal, A. Özdemir, V. Güçkan, I. Günay, Study of thermoluminescence response of purple to violet amethyst quartz from Balikesir, Turkey, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 358 (2015) 6–15. https://doi.org/.

DOI: 10.1016/j.nimb.2015.05.011

Google Scholar

[10] T. Korkut, H. Korkut, A. Karabulut, G. Budak, A new radiation shielding material: Amethyst ore, Annals of Nuclear Energy. 38 (2011) 56–59. https://doi.org/.

DOI: 10.1016/j.anucene.2010.08.017

Google Scholar

[11] D. Ponnamma, O. Aljarod, H. Parangusan, M. Al Ali Al-Maadeed, Electrospun nanofibers of PVDF-HFP composites containing magnetic nickel ferrite for energy harvesting application, Materials Chemistry and Physics. 239 (2020) 122257. https://doi.org/.

DOI: 10.1016/j.matchemphys.2019.122257

Google Scholar

[12] A. Bouhamed, Q. Binyu, B. Böhm, N. Jöhrmann, N. Behme, W.A. Goedel, B. Wunderle, O. Hellwig, O. Kanoun, A hybrid piezoelectric composite flexible film based on PVDF-HFP for boosting power generation, Composites Science and Technology. 208 (2021) 108769. https://doi.org/.

DOI: 10.1016/j.compscitech.2021.108769

Google Scholar

[13] Y. Wang, D. Lei, L. Wu, N. Hu, H. Ning, Alamusi, Y. Liu, Preparation of PVDF-HFP/CB/Ni nanocomposite films for piezoelectric energy harvesting, 62 (2023). https://doi.org/.

DOI: 10.1515/rams-2023-0146

Google Scholar

[14] I. Tournis, D. Tsiourvas, Z. Sideratou, L.G. Boutsika, A. Papavasiliou, N.K. Boukos, A.A. Sapalidis, Superhydrophobic nanoparticle-coated PVDF–HFP membranes with enhanced flux, anti-fouling and anti-wetting performance for direct contact membrane distillation-based desalination, Environmental Science: Water Research & Technology. 8 (2022) 2373–2380.

DOI: 10.1039/D2EW00407K

Google Scholar

[15] N. van de Werken, H. Tekinalp, P. Khanbolouki, S. Ozcan, A. Williams, M. Tehrani, Additively manufactured carbon fiber-reinforced composites: State of the art and perspective, Additive Manufacturing. 31 (2020) 100962. https://doi.org/.

DOI: 10.1016/j.addma.2019.100962

Google Scholar

[16] S. Sengupta, C.R. Tubio, R.S. Pinto, J. Barbosa, M.M. Silva, R. Gonçalves, M. Kundu, S. Lanceros-Mendez, C.M. Costa, Ternary composites of poly(vinylidene fluoride-co-hexafluoropropylene) with silver nanowires and titanium dioxide nanoparticles as separator membranes for lithium-ion batteries, Journal of Colloid and Interface Science. 668 (2024) 25–36. https://doi.org/.

DOI: 10.1016/j.jcis.2024.04.149

Google Scholar

[17] V.M. Macedo, J.C. Barbosa, H. Salazar, A. Fidalgo-Marijuan, R.K.R. Gajjala, L. Almásy, B.F. Gonçalves, V.I. Petrenko, M.M. Silva, R. Gonçalves, C.M. Costa, S. Lanceros-Mendez, Enhanced performance of solid polymer electrolytes combining poly(vinylidene fluoride-co-hexafluoropropylene), metal-organic framework and ionic liquid for advanced solid state lithium-ion batteries, Journal of Energy Storage. 90 (2024) 111919. https://doi.org/.

DOI: 10.1016/j.est.2024.111919

Google Scholar