Fracture Failure Analysis of Compressor Valve Spring

Article Preview

Abstract:

Compressor valve spring failure and rapid fracture occurred in a petrochemical enterprise. To find the cause of the failure, and to ensure the safe, stable, and continuous operation of the device, the failure of the spring is analyzed. In this paper, through the macro inspection, chemical composition analysis, metallographic analysis, scanning electron microscopy analysis, energy spectrum analysis, hardness analysis, and other tests, it is concluded that the main reason for the spring fracture is the fatigue fracture caused by unqualified materials. Suggestions are given to avoid similar problems in the future, and it is hoped that this failure analysis will provide valuable experience for similar failure problems in petrochemical enterprises.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 366)

Pages:

57-62

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] He, J. Z., Lu, J. N., Deng, X. Y., Xing, X. Q., & Luo, Z. C. (2022). Premature fracture of high-strength suspension springs caused by corrosion fatigue cracking. Results in Engineering, 16, 100749

DOI: 10.1016/j.rineng.2022.100749

Google Scholar

[2] Xing, X. Q., Lu, J. N., Jian, J. W., Li, L. J., & Luo, Z. C. (2021). Effect of environment-assisted cracking on the premature fatigue failure of high-strength valve springs. Engineering Failure Analysis, 126, 105466

DOI: 10.1016/j.engfailanal.2021.105466

Google Scholar

[3] Arslan, E., & Genel, K. (2023). Failure analysis of automotive helical spring. Engineering Failure Analysis, 153, 107569

DOI: 10.1016/j.engfailanal.2023.107569

Google Scholar

[4] He, G., & Wu, W. (2024). Failure Analysis of the Faulty Locomotive Coil Spring. Journal of Failure Analysis and Prevention, 1-11

DOI: 10.1007/s11668-024-01911-z

Google Scholar

[5] Liu, Y., Wen, Z., Wu, X., Peng, B., Zhou, Y., & Tao, G. (2024). Investigation of fatigue durability and influencing factors of coil springs: A case study for metro vehicles. International Journal of Fatigue, 108469

DOI: 10.1016/j.ijfatigue.2024.108469

Google Scholar

[6] Wang, B., Seffen, K. A., Guest, S. D., Lee, T. L., Huang, S., Luo, S., & Mi, J. (2020). In-situ multiscale shear failure of a bistable composite tape spring. Composites Science and Technology, 200, 108348

DOI: 10.1016/j.compscitech.2020.108348

Google Scholar

[7] Pratomo, F. Y., Wei, X., Zou, C., & Zhao, G. F. (2022). Investigation of the shear failure of rock joints using the four-dimensional lattice spring model. International Journal of Rock Mechanics and Mining Sciences, 152, 105070

DOI: 10.1016/j.ijrmms.2022.105070

Google Scholar

[8] Fakić, B., & Ćubela, D. (2023, May). Characterization of 17-7PH Steel of Modified State RH 950 with Modified Chemical Composition. In International Conference "New Technologies, Development, and Applications" (pp.69-77). Cham: Springer Nature Switzerland

DOI: 10.1007/978-3-031-31066-9_8

Google Scholar

[9] YUKAWA, N., MIZUTANI, M., & SAKA, H. (1969). Effect of Aluminum upon Phase Changes and Age-Hardening Behaviors in 17-7 PH Stainless Steel. Transactions of the Iron and Steel Institute of Japan, 9(3), 245-253.

DOI: 10.2355/isijinternational1966.9.245

Google Scholar

[10] Fakić, B., Ćubela, D., Burić, A., & Horoz, E. (2019). Regression analysis of tensile strength testing results of steel 17-7 PH with modified chemical composition. In Proceedings of 14th International Conference on Accomplishment in Mechanical and Industrial Engineering-DEMI 2019 (pp.691-697).

Google Scholar

[11] Nam, T. H., Kwon, M. S., & Kim, J. G. (2015). Mechanism of corrosion fatigue cracking of automotive coil spring steel. Metals and Materials International, 21, 1023-1030

DOI: 10.1007/s12540-015-5326-5

Google Scholar

[12] Katona, R. M., Karasz, E. K., & Schaller, R. F. (2023). A review of the governing factors in pit-to-crack transitions of metallic structures. Corrosion, 79(1), 72-96. https://doi.org/10.5006/ 4179

DOI: 10.5006/4179

Google Scholar

[13] Nishimura, Y., Yanase, K., Tanaka, Y., Miyamoto, N., Miyakawa, S., & Endo, M. (2020). Effects of mean shear stress on the torsional fatigue strength of spring steel with small scratches. International Journal of Damage Mechanics, 29(1), 4-18

DOI: 10.1177/1056789519831434

Google Scholar