[1]
He, J. Z., Lu, J. N., Deng, X. Y., Xing, X. Q., & Luo, Z. C. (2022). Premature fracture of high-strength suspension springs caused by corrosion fatigue cracking. Results in Engineering, 16, 100749
DOI: 10.1016/j.rineng.2022.100749
Google Scholar
[2]
Xing, X. Q., Lu, J. N., Jian, J. W., Li, L. J., & Luo, Z. C. (2021). Effect of environment-assisted cracking on the premature fatigue failure of high-strength valve springs. Engineering Failure Analysis, 126, 105466
DOI: 10.1016/j.engfailanal.2021.105466
Google Scholar
[3]
Arslan, E., & Genel, K. (2023). Failure analysis of automotive helical spring. Engineering Failure Analysis, 153, 107569
DOI: 10.1016/j.engfailanal.2023.107569
Google Scholar
[4]
He, G., & Wu, W. (2024). Failure Analysis of the Faulty Locomotive Coil Spring. Journal of Failure Analysis and Prevention, 1-11
DOI: 10.1007/s11668-024-01911-z
Google Scholar
[5]
Liu, Y., Wen, Z., Wu, X., Peng, B., Zhou, Y., & Tao, G. (2024). Investigation of fatigue durability and influencing factors of coil springs: A case study for metro vehicles. International Journal of Fatigue, 108469
DOI: 10.1016/j.ijfatigue.2024.108469
Google Scholar
[6]
Wang, B., Seffen, K. A., Guest, S. D., Lee, T. L., Huang, S., Luo, S., & Mi, J. (2020). In-situ multiscale shear failure of a bistable composite tape spring. Composites Science and Technology, 200, 108348
DOI: 10.1016/j.compscitech.2020.108348
Google Scholar
[7]
Pratomo, F. Y., Wei, X., Zou, C., & Zhao, G. F. (2022). Investigation of the shear failure of rock joints using the four-dimensional lattice spring model. International Journal of Rock Mechanics and Mining Sciences, 152, 105070
DOI: 10.1016/j.ijrmms.2022.105070
Google Scholar
[8]
Fakić, B., & Ćubela, D. (2023, May). Characterization of 17-7PH Steel of Modified State RH 950 with Modified Chemical Composition. In International Conference "New Technologies, Development, and Applications" (pp.69-77). Cham: Springer Nature Switzerland
DOI: 10.1007/978-3-031-31066-9_8
Google Scholar
[9]
YUKAWA, N., MIZUTANI, M., & SAKA, H. (1969). Effect of Aluminum upon Phase Changes and Age-Hardening Behaviors in 17-7 PH Stainless Steel. Transactions of the Iron and Steel Institute of Japan, 9(3), 245-253.
DOI: 10.2355/isijinternational1966.9.245
Google Scholar
[10]
Fakić, B., Ćubela, D., Burić, A., & Horoz, E. (2019). Regression analysis of tensile strength testing results of steel 17-7 PH with modified chemical composition. In Proceedings of 14th International Conference on Accomplishment in Mechanical and Industrial Engineering-DEMI 2019 (pp.691-697).
Google Scholar
[11]
Nam, T. H., Kwon, M. S., & Kim, J. G. (2015). Mechanism of corrosion fatigue cracking of automotive coil spring steel. Metals and Materials International, 21, 1023-1030
DOI: 10.1007/s12540-015-5326-5
Google Scholar
[12]
Katona, R. M., Karasz, E. K., & Schaller, R. F. (2023). A review of the governing factors in pit-to-crack transitions of metallic structures. Corrosion, 79(1), 72-96. https://doi.org/10.5006/ 4179
DOI: 10.5006/4179
Google Scholar
[13]
Nishimura, Y., Yanase, K., Tanaka, Y., Miyamoto, N., Miyakawa, S., & Endo, M. (2020). Effects of mean shear stress on the torsional fatigue strength of spring steel with small scratches. International Journal of Damage Mechanics, 29(1), 4-18
DOI: 10.1177/1056789519831434
Google Scholar