Effect of Varying Calcium Concentration on Dielectric Properties of Calcium Substituted Strontium M-Type Hexaferrites

Article Preview

Abstract:

Calcium substituted strontium M-Type hexaferrites are synthesized at different calcium concentrations by co-precipitation method. During synthesis process, PH value of 11 is achieved and solution is heated at 70 °C for 3 hours to form gel followed by drying process at 80 °C for 5 hours. Synthesized samples are then sintered at 650 °C for 4 hours at ramp rate of 10 °C/min. XRD analysis reveals that strontium M-Type hexaferrites at all calcium concentrations exhibit single phase hexagonal crystal structure. Change in density is observed for samples sintered at 800 °C as compared to samples sintered at 650 °C due to increase in temperature. SEM shows that the average particle size of strontium M-Type hexaferrites is greater at lower calcium concentration and smaller at higher concentrations. The average particle size varies from 530 nm to 345 nm for different calcium concentrations and fine particle sizes are achieved at all calcium concentrations. EDX results indicate that stoichiometric ratio is properly maintained according to samples composition and no extra peak of impurity or other element is detected in EDX spectrum. According to LCR measurement, pure strontium M-Type hexaferrites exhibit high dielectric constant at lower frequencies as compared to calcium substituted M-Type hexaferrites at different concentrations. Pure strontium M-Type hexaferrites have higher conductivity which might be due to presence of extra Fe3+ ions at crystal lattice sites. At lower frequencies pure strontium M-Type hexaferrites have higher conductivity and higher tangent loss at lower frequencies as compared to calcium substituted M-Type hexaferrites. While in the frequency range of 200 Hz to 300 Hz calcium substituted M-Type hexaferrites exhibit higher tangent loss.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 366)

Pages:

39-46

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Qiu, J., Wang, Y. and Gu, M., 2006. "Effect of Cr substitution on microwave absorption of BaFe12O19", Materials letters, 60(21-22), pp.2728-2732.

DOI: 10.1016/j.matlet.2006.01.079

Google Scholar

[2] Ashiq, M.N., Qureshi, R.B., Malana, M.A. and Ehsan, M.F., 2015. "Fabrication, structural, dielectric and magnetic properties of tantalum and potassium doped M-type strontium calcium hexaferrites", Journal of Alloys and Compounds, 651, pp.266-272.

DOI: 10.1016/j.jallcom.2015.05.181

Google Scholar

[3] Turchenko, V., Kostishyn, V.G., Trukhanov, S., Damay, F., Porcher, F., Balasoiu, M., Lupu, N., Bozzo, B., Fina, I., Trukhanov, A. and Waliszewski, J., 2020. "Crystal and magnetic structures, magnetic and ferroelectric properties of strontium ferrite partially substituted with in ions", Journal of Alloys and Compounds, 821, p.153412.

DOI: 10.1016/j.jallcom.2019.153412

Google Scholar

[4] Ashiq, M.N., Qureshi, R.B., Malana, M.A. and Ehsan, M.F., 2014. "Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites", Journal of alloys and compounds, 617, pp.437-443.

DOI: 10.1016/j.jallcom.2014.08.015

Google Scholar

[5] Moon, K.S., Lim, E.S. and Kang, Y.M., 2019. "Effect of Ca and La substitution on the structure and magnetic properties of M-type Sr-hexaferrites", Journal of Alloys and Compounds, 771, pp.350-355.

DOI: 10.1016/j.jallcom.2018.08.306

Google Scholar

[6] Iqbal, M.J., Ashiq, M.N. and Gul, I.H., 2010. "Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method", Journal of Magnetism and Magnetic Materials, 322(13), pp.1720-1726.

DOI: 10.1016/j.jmmm.2009.12.013

Google Scholar

[7] Chauhan, C.C., Kagdi, A.R., Jotania, R.B., Upadhyay, A., Sandhu, C.S., Shirsath, S.E. and Meena, S.S., 2018. "Structural, magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase", Ceramics International, 44(15), pp.17812-17823.

DOI: 10.1016/j.ceramint.2018.06.249

Google Scholar

[8] Luo, H., Rai, B.K., Mishra, S.R., Nguyen, V.V. and Liu, J.P., 2012. "Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route", Journal of Magnetism and Magnetic Materials, 324(17), pp.2602-2608.

DOI: 10.1016/j.jmmm.2012.02.106

Google Scholar

[9] Fang, Q., Cheng, H., Huang, K., Wang, J., Li, R. and Jiao, Y., 2005. "Doping effect on crystal structure and magnetic properties of chromium-substituted strontium hexaferrite nanoparticles", Journal of magnetism and magnetic materials, 294(3), pp.281-286.

DOI: 10.1016/j.jmmm.2004.12.024

Google Scholar

[10] Rawat, K. and Shishodia, P.K., 2017. "Structural and optical properties of sol gel derived Cu2ZnSnS4 nanoparticles", Advanced Powder Technology, 28(2), pp.611-617.

DOI: 10.1016/j.apt.2016.11.013

Google Scholar

[11] Ahmed, M.A., Okasha, N.N. and El-Sayed, M.M., 2007. " Enhancement of the physical properties of rare-earth-substituted Mn–Zn ferrites prepared by flash method", Ceramics International, 33(1), pp.49-58.

DOI: 10.1016/j.ceramint.2005.07.014

Google Scholar

[12] Marino-Castellanos, P.A., Somarriba-Jarque, J.C. and Anglada-Rivera, J., 2005. "Magnetic and microstructural properties of the BaFe (12−(4/3) x) SnxO19 ceramic system", Physica B: Condensed Matter, 362(1-4), pp.95-102.

DOI: 10.1016/j.physb.2005.01.480

Google Scholar

[13] Chu, N., Wang, X., Liu, Y., Jin, H., Wu, Q., Li, L., Wang, Z. and Ge, H., 2009. Magnetic properties of low Mn-doped NiCuZn nanocrystalline ferrites. Journal of Alloys and Compounds, 470(1-2), pp.438-442.

DOI: 10.1016/j.jallcom.2008.02.095

Google Scholar

[14] Xing, Q., Peng, Z., Wang, C., Fu, Z. and Fu, X., 2012. "Doping effect of Y3+ ions on the microstructural and electromagnetic properties of Mn–Zn ferrites", Physica B: Condensed Matter, 407(3), pp.388-392.

DOI: 10.1016/j.physb.2011.11.003

Google Scholar

[15] Hankare, P.P., Patil, R.P., Garadkar, K.M., Sasikala, R. and Chougule, B.K., 2011. "Synthesis, dielectric behavior and impedance measurement studies of Cr-substituted Zn–Mn ferrites", Materials Research Bulletin, 46(3), pp.447-452.

DOI: 10.1016/j.materresbull.2010.11.026

Google Scholar

[16] Varshney, D., Verma, K. and Kumar, A., 2011. "Structural and vibrational properties of ZnxMn1− xFe2O4 (x= 0.0, 0.25, 0.50, 0.75, 1.0) mixed ferrites", Materials Chemistry and Physics, 131(1-2), pp.413-419.

DOI: 10.1016/j.matchemphys.2011.09.066

Google Scholar