[1]
C. S. Babu, K. S. Kesavanarayanan, P. Kalaivani, et al. A simple Densitometric method for the quantification of inhibitory neurotransmitter Gamma-Aminobutyric acid (GABA) in rat brain tissue. Chromatogr. Res. Int. Vol. 2011 (2011), p. e732409
DOI: 10.4061/2011/732409
Google Scholar
[2]
D. M. F. Silva, V. P. Ferraz and A. M. Ribeiro. Improved high-performance liquid chromatographic method for GABA and glutamate determination in regions of the rodent brain. J. Neurosci. Methods. Vol. 177 no. 2 (2009), p.289–93
DOI: 10.1016/j.jneumeth.2008.10.011
Google Scholar
[3]
F. Du, W. J. Chu, B. Yang, et al. In vivo GABA detection with improved selectivity and sensitivity by localized double quantum filter technique at 4.1T. Magn. Reson. Imaging. Vol. 22 no. 1 (2004), p.103–8
DOI: 10.1016/j.mri.2003.06.001
Google Scholar
[4]
R. E. Ozel, A. Hayat and S. Andreescu. Recent developments in electrochemical sensors for the detection of neurotransmitters for applications in biomedicine. Anal. Lett. Vol 48 no. 7 (2015), p.1044–69
DOI: 10.1080/00032719.2014.976867
Google Scholar
[5]
D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nat. Vol 458 no. 7240 (2009), pp.872-876
DOI: 10.1038/nature07872
Google Scholar
[6]
S. Goutham, S. Kaur, K. K. Sadasivuni, et al. Nanostructured ZnO gas sensors obtained by green method and combustion technique. Mater. Sci. Semicond. Process. Vol. 57 (2017), p.110–15
DOI: 10.1016/j.mssp.2016.09.037
Google Scholar
[7]
O. Jongprateep, K. Meesombad, R. Techapiesancharoenkij, et al. Influences of chemical composition, microstructure and bandgap energy on photocatalytic and antimicrobial activities of ZnO and Ag-doped ZnO by solution combustion technique. J. Met. Mater. Miner. Vol. 29 no. 1 (2019), pp.78-85
DOI: 10.1016/j.ceramint.2018.08.108
Google Scholar
[8]
P. Raizada, A. Sudhaik and P. Singh, Photocatalytic water decontamination using graphene and ZnO coupled photocatalyst: A review. Mater. Sci. Energy Technol. Vol. 2 no. 3 (2019), pp.509-525
DOI: 10.1016/j.mset.2019.04.007
Google Scholar
[9]
N. I. Zaaba, K. L. Foo, U. Hashim, et al. Synthesis of graphene oxide using modified Hummers method: solvent influence. Procedia Eng. Vol. 184 (2017), p.469–477
DOI: 10.1016/j.proeng.2017.04.118
Google Scholar
[10]
L. Stobinski, B. Lesiak, A. Malolepszy, et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectros. Relat. Phenomena. Vol. 195 (2014), pp.145-154
DOI: 10.1016/j.elspec.2014.07.003
Google Scholar
[11]
D. Manyasree, P. Kiranmayi and V. R. Kolli. Characterization and antibacterial activity of ZnO nanoparticles synthesized by co-precipitation method. Int. J. Appl. Pharm. Vol. 10 no. 6 (2018), pp.224-228
DOI: 10.22159/ijap.2018v10i6.29376
Google Scholar
[12]
S. Wang, M. Yi, S. Liang, et al. The effect of surfactants and their concentrations on the liquid-exfoilation of graphene. RSC Adv. Vol. 6 no. 61 (2016) pp.56705-56710
DOI: 10.1039/c6ra10933k
Google Scholar
[13]
B. Li, T. Liu, Y. Wang and Z. Wang. ZnO/graphene oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J. Colloid Interface Sci. Vol. 377 (2012), pp.114-121
DOI: 10.1016/j.jcis.2012.03.060
Google Scholar
[14]
N. Sebastian, W. C. Yu and D. Balram. Electrochemical detection of an antibiotic drug chloramphenicol based on a graphene oxide/hierarchical zinc oxide nanocomposite. Inorg. Chem. Front. Vol. 6 no. 1 (2019), pp.82-93
DOI: 10.1039/c8qi01000e
Google Scholar
[15]
N. Sato, M. Haruta, Y. Ohta, et al. Fe2O3/MWCNTs modified microdialysis electrode for dopamine detection. Mater. Res. Express. Vol. 7 no. 1 (2019), p.015701–1
DOI: 10.1088/2053-1591/ab59ff
Google Scholar
[16]
J. J. Wu, G. R. Chen, H. H. Yang et al. Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells. Appl. Phys. Lett. Vol. 90 no. 21 (2007), p.213109
DOI: 10.1063/1.2742639
Google Scholar
[17]
L. Fotouhi, M. Fatollahzadeh and M. M. Heravi. Electrochemical behavior and voltammetric determination of Sulfaguanidine at a glassy carbon electrode modified with a multi-walled carbon nanotube. Int. J. Electrochem. Sci. Vol. 7 no. 5 (2012), p.3919–28
DOI: 10.1016/s1452-3981(23)19509-5
Google Scholar
[18]
N. Moldovan, I.-I. Blaga, S. Billa, Hossain, et al. Brain-implantable multifunctional probe for simultaneous detection of glutamate and GABA neurotransmitters. Sens. Actuators. B. Chem. Vol. 337 (2021), p.129795
DOI: 10.1016/j.snb.2021.129795
Google Scholar
[19]
I. Hossain, F. Dong, P.T. Doughty, et al. A Novel Microbiosensor Microarray for Continuous ex Vivo Monitoring of Gamma-Aminobutyric Acid in Real-Time. Front. Neurosci. Vol. 12 (2018), pp.500-500
DOI: 10.3389/fnins.2018.00500
Google Scholar
[20]
P. T. Doughty, I. Hossain, C. Gong, et al. Novel Microwire-Based Biosensor Probe for Simultaneous Real-Time Measurement of Glutamate and GABA Dynamics in Vitro and in Vivo. Sci. Rep. Vol. 10 no. 1 (2020), pp.12777-12777
DOI: 10.1038/s41598-020-69636-1
Google Scholar