ZnO/GO Composite as Electrochemical Sensor for GABA Detection

Article Preview

Abstract:

Gamma-aminobutyric acid (GABA) is a crucial inhibitory neurotransmitter that decreases nervous system activity by inhibiting signal transmission across synapses. Imbalances in GABA levels are linked to neurological diseases. This study developed an electrochemical sensor for detecting GABA using a ZnO/GO composite as the sensing material. Graphene oxide (GO) was synthesized via a modified Hummer’s method, while nanoparticulate zinc oxide (ZnO) was prepared using a solution combustion method. X-ray diffraction and morphological analysis showed crumpled graphene oxide sheets stacked into multilayers and a single phase of wurtzite-structured ZnO with a crystallite size of 69.37 nm; however, the particles tended to cluster together into larger agglomerates, leading to a reduction in specific surface area. The ZnO/GO composite demonstrated synergistic electrocatalytic activity. Cyclic voltammetry in GABA solutions (0.1 to 1000 µM) revealed distinctive oxidation and reduction peaks with sensitivity ranged from 0.0184 to 0.6629 µA mM-1 mm-2. Despite moderate electrocatalytic performance, the ZnO/graphene oxide composite shows potential as a GABA sensing material.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 367)

Pages:

41-48

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. S. Babu, K. S. Kesavanarayanan, P. Kalaivani, et al. A simple Densitometric method for the quantification of inhibitory neurotransmitter Gamma-Aminobutyric acid (GABA) in rat brain tissue. Chromatogr. Res. Int. Vol. 2011 (2011), p. e732409

DOI: 10.4061/2011/732409

Google Scholar

[2] D. M. F. Silva, V. P. Ferraz and A. M. Ribeiro. Improved high-performance liquid chromatographic method for GABA and glutamate determination in regions of the rodent brain. J. Neurosci. Methods. Vol. 177 no. 2 (2009), p.289–93

DOI: 10.1016/j.jneumeth.2008.10.011

Google Scholar

[3] F. Du, W. J. Chu, B. Yang, et al. In vivo GABA detection with improved selectivity and sensitivity by localized double quantum filter technique at 4.1T. Magn. Reson. Imaging. Vol. 22 no. 1 (2004), p.103–8

DOI: 10.1016/j.mri.2003.06.001

Google Scholar

[4] R. E. Ozel, A. Hayat and S. Andreescu. Recent developments in electrochemical sensors for the detection of neurotransmitters for applications in biomedicine. Anal. Lett. Vol 48 no. 7 (2015), p.1044–69

DOI: 10.1080/00032719.2014.976867

Google Scholar

[5] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nat. Vol 458 no. 7240 (2009), pp.872-876

DOI: 10.1038/nature07872

Google Scholar

[6] S. Goutham, S. Kaur, K. K. Sadasivuni, et al. Nanostructured ZnO gas sensors obtained by green method and combustion technique. Mater. Sci. Semicond. Process. Vol. 57 (2017), p.110–15

DOI: 10.1016/j.mssp.2016.09.037

Google Scholar

[7] O. Jongprateep, K. Meesombad, R. Techapiesancharoenkij, et al. Influences of chemical composition, microstructure and bandgap energy on photocatalytic and antimicrobial activities of ZnO and Ag-doped ZnO by solution combustion technique. J. Met. Mater. Miner. Vol. 29 no. 1 (2019), pp.78-85

DOI: 10.1016/j.ceramint.2018.08.108

Google Scholar

[8] P. Raizada, A. Sudhaik and P. Singh, Photocatalytic water decontamination using graphene and ZnO coupled photocatalyst: A review. Mater. Sci. Energy Technol. Vol. 2 no. 3 (2019), pp.509-525

DOI: 10.1016/j.mset.2019.04.007

Google Scholar

[9] N. I. Zaaba, K. L. Foo, U. Hashim, et al. Synthesis of graphene oxide using modified Hummers method: solvent influence. Procedia Eng. Vol. 184 (2017), p.469–477

DOI: 10.1016/j.proeng.2017.04.118

Google Scholar

[10] L. Stobinski, B. Lesiak, A. Malolepszy, et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectros. Relat. Phenomena. Vol. 195 (2014), pp.145-154

DOI: 10.1016/j.elspec.2014.07.003

Google Scholar

[11] D. Manyasree, P. Kiranmayi and V. R. Kolli. Characterization and antibacterial activity of ZnO nanoparticles synthesized by co-precipitation method. Int. J. Appl. Pharm. Vol. 10 no. 6 (2018), pp.224-228

DOI: 10.22159/ijap.2018v10i6.29376

Google Scholar

[12] S. Wang, M. Yi, S. Liang, et al. The effect of surfactants and their concentrations on the liquid-exfoilation of graphene. RSC Adv. Vol. 6 no. 61 (2016) pp.56705-56710

DOI: 10.1039/c6ra10933k

Google Scholar

[13] B. Li, T. Liu, Y. Wang and Z. Wang. ZnO/graphene oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J. Colloid Interface Sci. Vol. 377 (2012), pp.114-121

DOI: 10.1016/j.jcis.2012.03.060

Google Scholar

[14] N. Sebastian, W. C. Yu and D. Balram. Electrochemical detection of an antibiotic drug chloramphenicol based on a graphene oxide/hierarchical zinc oxide nanocomposite. Inorg. Chem. Front. Vol. 6 no. 1 (2019), pp.82-93

DOI: 10.1039/c8qi01000e

Google Scholar

[15] N. Sato, M. Haruta, Y. Ohta, et al. Fe2O3/MWCNTs modified microdialysis electrode for dopamine detection. Mater. Res. Express. Vol. 7 no. 1 (2019), p.015701–1

DOI: 10.1088/2053-1591/ab59ff

Google Scholar

[16] J. J. Wu, G. R. Chen, H. H. Yang et al. Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells. Appl. Phys. Lett. Vol. 90 no. 21 (2007), p.213109

DOI: 10.1063/1.2742639

Google Scholar

[17] L. Fotouhi, M. Fatollahzadeh and M. M. Heravi. Electrochemical behavior and voltammetric determination of Sulfaguanidine at a glassy carbon electrode modified with a multi-walled carbon nanotube. Int. J. Electrochem. Sci. Vol. 7 no. 5 (2012), p.3919–28

DOI: 10.1016/s1452-3981(23)19509-5

Google Scholar

[18] N. Moldovan, I.-I. Blaga, S. Billa, Hossain, et al. Brain-implantable multifunctional probe for simultaneous detection of glutamate and GABA neurotransmitters. Sens. Actuators. B. Chem. Vol. 337 (2021), p.129795

DOI: 10.1016/j.snb.2021.129795

Google Scholar

[19] I. Hossain, F. Dong, P.T. Doughty, et al. A Novel Microbiosensor Microarray for Continuous ex Vivo Monitoring of Gamma-Aminobutyric Acid in Real-Time. Front. Neurosci. Vol. 12 (2018), pp.500-500

DOI: 10.3389/fnins.2018.00500

Google Scholar

[20] P. T. Doughty, I. Hossain, C. Gong, et al. Novel Microwire-Based Biosensor Probe for Simultaneous Real-Time Measurement of Glutamate and GABA Dynamics in Vitro and in Vivo. Sci. Rep. Vol. 10 no. 1 (2020), pp.12777-12777

DOI: 10.1038/s41598-020-69636-1

Google Scholar