[1]
M. Kowalczuk, "Polymer materials—challenges and hope," (in English), Frontiers in Polymer Science, Mini Review vol. 1, 2023-November-02 2023.
Google Scholar
[2]
F. Xie, L. Huang, L. Jinsong, and Y. Liu, "Thermoset shape memory polymers and their composites," Journal of Intelligent Material Systems and Structures, vol. 27, 02/28 2016.
DOI: 10.1177/1045389X16634211
Google Scholar
[3]
D.-J. Kwon et al., "Impacts of thermoplastics content on mechanical properties of continuous fiber-reinforced thermoplastic composites," Composites Part B: Engineering, vol. 216, p.108859, 2021/07/01/ 2021.
DOI: 10.1016/j.compositesb.2021.108859
Google Scholar
[4]
J. P. Reis, M. de Moura, and S. Samborski, "Thermoplastic Composites and Their Promising Applications in Joining and Repair Composites Structures: A Review," Materials, vol. 13, no. 24, p.5832, 2020. [Online]. Available: https://www.mdpi.com/1996-1944/13/24/5832.
DOI: 10.3390/ma13245832
Google Scholar
[5]
H. Koruk and G. Genc, "17 - Acoustic and mechanical properties of luffa fiber-reinforced biocomposites," in Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, M. Jawaid, M. Thariq, and N. Saba Eds.: Woodhead Publishing, 2019, pp.325-341.
DOI: 10.1016/b978-0-08-102292-4.00017-5
Google Scholar
[6]
G. Oliveux, J.-L. Bailleul, A. Gillet, O. Mantaux, and G. A. Leeke, "Recovery and reuse of discontinuous carbon fibres by solvolysis: Realignment and properties of remanufactured materials," Composites Science and Technology, vol. 139, pp.99-108, 2017/02/08/ 2017.
DOI: 10.1016/j.compscitech.2016.11.001
Google Scholar
[7]
A. K. Panda, R. K. Singh, and D. K. Mishra, "Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective," Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp.233-248, 2010/01/01/ 2010.
DOI: 10.1016/j.rser.2009.07.005
Google Scholar
[8]
D. Montarnal, M. Capelot, F. Tournilhac, and L. Leibler, "Silica-Like Malleable Materials from Permanent Organic Networks," Science, vol. 334, no. 6058, pp.965-968, 2011, doi:.
DOI: 10.1126/science.1212648
Google Scholar
[9]
N. J. Van Zee and R. Nicolaÿ, "Vitrimers: Permanently crosslinked polymers with dynamic network topology," Progress in Polymer Science, vol. 104, p.101233, 2020/05/01/ 2020.
DOI: 10.1016/j.progpolymsci.2020.101233
Google Scholar
[10]
G. M. Scheutz, J. J. Lessard, M. B. Sims, and B. S. Sumerlin, "Adaptable Crosslinks in Polymeric Materials: Resolving the Intersection of Thermoplastics and Thermosets," Journal of the American Chemical Society, vol. 141, no. 41, pp.16181-16196, 2019/10/16 2019.
DOI: 10.1021/jacs.9b07922
Google Scholar
[11]
M. Röttger, T. Domenech, R. van der Weegen, A. Breuillac, R. Nicolaÿ, and L. Leibler, "High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis," Science, vol. 356, no. 6333, pp.62-65, 2017, doi:.
DOI: 10.1126/science.aah5281
Google Scholar
[12]
Y. Wu, Y. Wei, and Y. Ji, "Carbon material/vitrimer composites: Towards sustainable, functional, and high-performance crosslinked polymeric materials," Giant, vol. 13, p.100136, 2023/03/01/ 2023.
DOI: 10.1016/j.giant.2022.100136
Google Scholar
[13]
Y. Liu, Z. Tang, Y. Chen, S. Wu, and B. Guo, "Programming dynamic imine bond into elastomer/graphene composite toward mechanically strong, malleable, and multi-stimuli responsive vitrimer," Composites Science and Technology, vol. 168, pp.214-223, 2018/11/10/ 2018.
DOI: 10.1016/j.compscitech.2018.10.005
Google Scholar
[14]
J. Luo et al., "Elastic vitrimers: Beyond thermoplastic and thermoset elastomers," Matter, vol. 5, no. 5, pp.1391-1422, 2022/05/04/ 2022.
DOI: 10.1016/j.matt.2022.04.007
Google Scholar
[15]
T. Liu, B. Zhao, and J. Zhang, "Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification," Polymer, vol. 194, p.122392, 2020/04/24/ 2020.
DOI: 10.1016/j.polymer.2020.122392
Google Scholar
[16]
S. Debnath, S. Kaushal, and U. Ojha, "Catalyst-Free Partially Bio-Based Polyester Vitrimers," ACS Applied Polymer Materials, vol. 2, no. 2, pp.1006-1013, 2020/02/14 2020.
DOI: 10.1021/acsapm.0c00016
Google Scholar
[17]
S. P. Black, J. K. M. Sanders, and A. R. Stefankiewicz, "Disulfide exchange: exposing supramolecular reactivity through dynamic covalent chemistry," Chemical Society Reviews, 10.1039/C3CS60326A vol. 43, no. 6, pp.1861-1872, 2014.
DOI: 10.1039/C3CS60326A
Google Scholar
[18]
M. Chen, L. Zhou, Y. Wu, X. Zhao, and Y. Zhang, "Rapid Stress Relaxation and Moderate Temperature of Malleability Enabled by the Synergy of Disulfide Metathesis and Carboxylate Transesterification in Epoxy Vitrimers," ACS Macro Letters, vol. 8, no. 3, pp.255-260, 2019/03/19 2019.
DOI: 10.1021/acsmacrolett.9b00015
Google Scholar
[19]
H. Memon et al., "Vanillin-Based Epoxy Vitrimer with High Performance and Closed-Loop Recyclability," Macromolecules, vol. 53, no. 2, pp.621-630, 2020/01/28 2020.
DOI: 10.1021/acs.macromol.9b02006
Google Scholar
[20]
X. Liu, E. Zhang, Z. Feng, J. Liu, B. Chen, and L. Liang, "Degradable bio-based epoxy vitrimers based on imine chemistry and their application in recyclable carbon fiber composites," Journal of Materials Science, vol. 56, no. 28, pp.15733-15751, 2021/10/01 2021.
DOI: 10.1007/s10853-021-06291-5
Google Scholar
[21]
S. Hamzehlou and F. Ruipérez, "Computational study of the transamination reaction in vinylogous acyls: Paving the way to design vitrimers with controlled exchange kinetics," Journal of Polymer Science, vol. 60, no. 13, pp.1988-1999, 2022.
DOI: 10.1002/pol.20220099
Google Scholar
[22]
W. Denissen, G. Rivero, R. Nicolaÿ, L. Leibler, J. M. Winne, and F. E. Du Prez, "Vinylogous Urethane Vitrimers," Advanced Functional Materials, vol. 25, no. 16, pp.2451-2457, 2015.
DOI: 10.1002/adfm.201404553
Google Scholar
[23]
L. Imbernon and S. Norvez, "From landfilling to vitrimer chemistry in rubber life cycle," European Polymer Journal, vol. 82, pp.347-376, 2016/09/01/ 2016.
DOI: 10.1016/j.eurpolymj.2016.03.016
Google Scholar
[24]
B. Krishnakumar, R. V. S. P. Sanka, W. H. Binder, V. Parthasarthy, S. Rana, and N. Karak, "Vitrimers: Associative dynamic covalent adaptive networks in thermoset polymers," Chemical Engineering Journal, vol. 385, p.123820, 2020/04/01/ 2020.
DOI: 10.1016/j.cej.2019.123820
Google Scholar
[25]
W. Schmolke, N. Perner, and S. Seiffert, "Dynamically Cross-Linked Polydimethylsiloxane Networks with Ambient-Temperature Self-Healing," Macromolecules, vol. 48, no. 24, pp.8781-8788, 2015/12/22 2015.
DOI: 10.1021/acs.macromol.5b01666
Google Scholar
[26]
Y. Wang, D. T. Pham, and C. Ji, "Self-healing composites: A review," Cogent Engineering, vol. 2, no. 1, p.1075686, 2015/12/31 2015.
DOI: 10.1080/23311916.2015.1075686
Google Scholar
[27]
L. Guadagno, M. Raimondo, C. Naddeo, P. Longo, A. Mariconda, and W. H. Binder, "Healing efficiency and dynamic mechanical properties of self-healing epoxy systems," Smart Materials and Structures, vol. 23, no. 4, p.045001, 2014/02/20 2014.
DOI: 10.1088/0964-1726/23/4/045001
Google Scholar
[28]
P. Gould, "Self-help for ailing structures," Materials Today, vol. 6, no. 6, pp.44-49, 2003/06/01/ 2003.
DOI: 10.1016/S1369-7021(03)00633-3
Google Scholar
[29]
S. Billiet, W. Van Camp, X. K. D. Hillewaere, H. Rahier, and F. E. Du Prez, "Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry," Polymer, vol. 53, no. 12, pp.2320-2326, 2012/05/25/ 2012.
DOI: 10.1016/j.polymer.2012.03.061
Google Scholar
[30]
S. Zainuddin et al., "Recovery and improvement in low-velocity impact properties of e-glass/epoxy composites through novel self-healing technique," Composite Structures, vol. 108, pp.277-286, 2014/02/01/ 2014.
DOI: 10.1016/j.compstruct.2013.09.023
Google Scholar
[31]
G. P. McCombe, J. Rouse, R. S. Trask, P. J. Withers, and I. P. Bond, "X-ray damage characterisation in self-healing fibre reinforced polymers," Composites Part A: Applied Science and Manufacturing, vol. 43, no. 4, pp.613-620, 2012/04/01/ 2012.
DOI: 10.1016/j.compositesa.2011.12.020
Google Scholar
[32]
J. F. Patrick et al., "Continuous Self-Healing Life Cycle in Vascularized Structural Composites," Advanced Materials, vol. 26, no. 25, pp.4302-4308, 2014.
DOI: 10.1002/adma.201400248
Google Scholar
[33]
M.-U. Saeed, Z. Chen, and B. Li, "Manufacturing strategies for microvascular polymeric composites: A review," Composites Part A: Applied Science and Manufacturing, vol. 78, pp.327-340, 2015/11/01/ 2015.
DOI: 10.1016/j.compositesa.2015.08.028
Google Scholar
[34]
L. Huang et al., "Catalyst-Free Vitrimer Cross-Linked by Biomass-Derived Compounds with Mechanical Robustness, Reprocessability, and Multishape Memory Effects," Macromolecular Rapid Communications, vol. 42, no. 21, p.2100432, 2021.
DOI: 10.1002/marc.202100432
Google Scholar
[35]
A. M. Hubbard et al., "Recyclability of Vitrimer Materials: Impact of Catalyst and Processing Conditions," ACS Omega, vol. 7, no. 33, pp.29125-29134, 2022/08/23 2022.
DOI: 10.1021/acsomega.2c02677
Google Scholar
[36]
I. Azcune and I. Odriozola, "Aromatic disulfide crosslinks in polymer systems: Self-healing, reprocessability, recyclability and more," European Polymer Journal, vol. 84, pp.147-160, 2016/11/01/ 2016.
DOI: 10.1016/j.eurpolymj.2016.09.023
Google Scholar
[37]
Y. Yang et al., "Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli," Matter, vol. 4, no. 10, pp.3354-3365, 2021/10/06/ 2021.
DOI: 10.1016/j.matt.2021.08.009
Google Scholar
[38]
N. Lorwanishpaisarn et al., "Self-healing Ability of Epoxy Vitrimer Nanocomposites Containing Bio-Based Curing Agents and Carbon Nanotubes for Corrosion Protection," Journal of Polymers and the Environment, vol. 30, no. 2, pp.472-482, 2022/02/01 2022.
DOI: 10.1007/s10924-021-02213-3
Google Scholar
[39]
Y. Hu et al., "Plant oil-derived vitrimers-graphene composites with self-healing ability triggered by multiple stimuli," Composites Part B: Engineering, vol. 259, p.110704, 2023/06/15/ 2023.
DOI: 10.1016/j.compositesb.2023.110704
Google Scholar
[40]
P. Jia et al., "Bio-based and degradable vitrimer-graphene/graphene oxide composites with self-healing ability stimulated by heat, electricity and microwave as temperature and fire warning sensors," Composites Science and Technology, vol. 227, p.109573, 2022/08/18/ 2022.
DOI: 10.1016/j.compscitech.2022.109573
Google Scholar
[41]
Y. Tao, L. Fang, J. Zhou, C. Wang, J. Sun, and Q. Fang, "Gel–Sol Transition of Vanillin-Based Polyimine Vitrimers: Imparting Vitrimers with Extra Welding and Self-Healing Abilities," ACS Applied Polymer Materials, vol. 2, no. 2, pp.295-303, 2020/02/14 2020.
DOI: 10.1021/acsapm.9b00809
Google Scholar
[42]
A. Zych et al., "Biobased, Biodegradable, Self-Healing Boronic Ester Vitrimers from Epoxidized Soybean Oil Acrylate," ACS Applied Polymer Materials, vol. 3, no. 2, pp.1135-1144, 2021/02/12 2021.
DOI: 10.1021/acsapm.0c01335
Google Scholar
[43]
C. Zhang et al., "Rapid self-healing, multiple recyclability and mechanically robust plant oil-based epoxy resins enabled by incorporating tri-dynamic covalent bonding," Journal of Materials Chemistry A, 10.1039/D1TA04593H vol. 9, no. 34, pp.18431-18439, 2021.
DOI: 10.1039/D1TA04593H
Google Scholar
[44]
J. Liu, J.-J. Li, Z.-H. Luo, and Y.-N. Zhou, "Fast room‐temperature self‐healing vitrimers enabled by accelerated associative exchange kinetics," Chemical Engineering Journal, vol. 452, p.139452, 2023/01/15/ 2023.
DOI: 10.1016/j.cej.2022.139452
Google Scholar
[45]
D. J. Fortman, J. P. Brutman, C. J. Cramer, M. A. Hillmyer, and W. R. Dichtel, "Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers," Journal of the American Chemical Society, vol. 137, no. 44, pp.14019-14022, 2015/11/11 2015.
DOI: 10.1021/jacs.5b08084
Google Scholar
[46]
S. Zhang, T. Liu, C. Hao, A. Mikkelsen, B. Zhao, and J. Zhang, "Hempseed Oil-Based Covalent Adaptable Epoxy-Amine Network and Its Potential Use for Room-Temperature Curable Coatings," ACS Sustainable Chemistry & Engineering, vol. 8, no. 39, pp.14964-14974, 2020/10/05 2020.
DOI: 10.1021/acssuschemeng.0c05223
Google Scholar
[47]
X. Yang, L. Guo, X. Xu, S. Shang, and H. Liu, "A fully bio-based epoxy vitrimer: Self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange," Materials & Design, vol. 186, p.108248, 2020/01/15/ 2020, doi: https://doi.org/10.1016/ j.matdes.2019.108248.
DOI: 10.1016/j.matdes.2019.108248
Google Scholar
[48]
Y.-z. Xu et al., "Catalyst-free self-healing fully bio-based vitrimers derived from tung oil: Strong mechanical properties, shape memory, and recyclability," Industrial Crops and Products, vol. 171, p.113978, 2021/11/01/ 2021.
DOI: 10.1016/j.indcrop.2021.113978
Google Scholar
[49]
Y. Zeng, J. Li, S. Liu, and B. Yang, "Rosin-Based Epoxy Vitrimers with Dynamic Boronic Ester Bonds," Polymers, vol. 13, no. 19, p.3386, 2021. [Online]. Available: https://www.mdpi.com/ 2073-4360/13/19/3386.
DOI: 10.3390/polym13193386
Google Scholar
[50]
W. Li et al., "Thermal-induced self-healing bio-based vitrimers: Shape memory, recyclability, degradation, and intrinsic flame retardancy," Polymer Degradation and Stability, vol. 202, p.110039, 2022/08/01/ 2022.
DOI: 10.1016/j.polymdegradstab.2022.110039
Google Scholar
[51]
W. Li, L. Xiao, Y. Wang, J. Chen, and X. Nie, "Self-healing silicon-containing eugenol-based epoxy resin based on disulfide bond exchange: Synthesis and structure-property relationships," Polymer, vol. 229, p.123967, 2021/08/16/ 2021, doi: https://doi.org/10.1016/j.polymer. 2021.123967.
DOI: 10.1016/j.polymer.2021.123967
Google Scholar
[52]
C. Ocando, Y. Ecochard, M. Decostanzi, S. Caillol, and L. Avérous, "Dynamic network based on eugenol-derived epoxy as promising sustainable thermoset materials," European Polymer Journal, vol. 135, p.109860, 2020/07/15/ 2020, doi: https://doi.org/10.1016/j.eurpolymj. 2020.109860.
DOI: 10.1016/j.eurpolymj.2020.109860
Google Scholar
[53]
J. Sheng et al., "Using epoxy/acid stoichiometry to rationally tune the thermomechanical and reprocessing properties of epoxy vitrimers," Journal of Applied Polymer Science, vol. 140, no. 47, p. e54699, 2023.
DOI: 10.1002/app.54699
Google Scholar
[54]
P. Chen et al., "Functional bio-based vitrimer with excellent healing and recyclability based on conjugated deflection self-toughening," Chemical Engineering Journal, vol. 474, p.145680, 2023/10/15/ 2023.
DOI: 10.1016/j.cej.2023.145680
Google Scholar
[55]
C. Li, B. Ju, and S. Zhang, "Construction of a new green vitrimer material: introducing dynamic covalent bond into carboxymethyl cellulose," Cellulose, vol. 28, no. 5, pp.2879-2888, 2021/03/01 2021.
DOI: 10.1007/s10570-021-03763-4
Google Scholar
[56]
Y. Li et al., "Catalyst-free vitrimer elastomers based on a dimer acid: robust mechanical performance, adaptability and hydrothermal recyclability," Green Chemistry, 10.1039/C9GC04080C vol. 22, no. 3, pp.870-881, 2020.
DOI: 10.1039/C9GC04080C
Google Scholar
[57]
M. Fei, T. Liu, B. Zhao, A. Otero, Y.-C. Chang, and J. Zhang, "From Glassy Plastic to Ductile Elastomer: Vegetable Oil-Based UV-Curable Vitrimers and Their Potential Use in 3D Printing," ACS Applied Polymer Materials, vol. 3, no. 5, pp.2470-2479, 2021/05/14 2021.
DOI: 10.1021/acsapm.1c00063
Google Scholar
[58]
B. Xue et al., "Sustainable alternative for bisphenol A epoxy resin high-performance and recyclable lignin-based epoxy vitrimers," Industrial Crops and Products, vol. 168, p.113583, 2021/09/15/ 2021.
DOI: 10.1016/j.indcrop.2021.113583
Google Scholar
[59]
F. Benazzo, D. Rigamonti, P. Bettini, G. Sala, and A. M. Grande, "Interlaminar fracture of structural fibre/epoxy composites integrating damage sensing and healing," Composites Part B: Engineering, vol. 244, p.110137, 2022/09/01/ 2022.
DOI: 10.1016/j.compositesb.2022.110137
Google Scholar
[60]
V. Solouki Bonab, V. Karimkhani, and I. Manas-Zloczower, "Ultra-Fast Microwave Assisted Self-Healing of Covalent Adaptive Polyurethane Networks with Carbon Nanotubes," Macromolecular Materials and Engineering, vol. 304, no. 1, p.1800405, 2019.
DOI: 10.1002/mame.201800405
Google Scholar